Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
SILVA, Thiago Batista Rodrigues |
Orientador(a): |
PRUDÊNCIO, Ricardo Bastos Cavalcante |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/47653
|
Resumo: |
A viticultura é a ciência que estuda o cultivo da uva para produção de sucos, vinhos e outros derivados. Tanto os produtos quanto a cadeia produtiva possuem elevada importância soci- oeconômica e cultural em grande parte do mundo. Recentemente, técnicas de enxertia vêm sendo aplicadas para aumentar a produtividade e a qualidade no setor, no entanto, o processo para encontrar cultivares de porta-enxerto que sejam compatíveis com enxertos de videiras é essencialmente experimental, lento e custoso. Embora a utilização de aprendizagem de má- quina no Agronegócio não seja novidade, a literatura carece de trabalhos que demonstrem a aplicabilidade dessa técnica para apoiar especificamente processos de enxertia. Este trabalho, por meio de uma perspectiva de Sistema de Recomendação, oferece uma comparação entre abordagens de predição e de classificação para o problema da seleção de cultivares de enxerto e porta-enxerto. Além disso, também avalia os desempenhos de algoritmos baseados em fil- tragem colaborativa com os de algoritmos baseados em métodos de Kernel, para as tarefas de predição de ratings e de classificação de interações. Ao todo, 17 modelos baseados em algoritmos de filtragem colaborativa e métodos de kernel foram avaliados em um conjunto de dados de 251 interações rotuladas, atingindo o valor máximo de 96% para a métrica f1-score. Os resultados indicaram uma vantagem significativa para a abordagem de classificação, espe- cialmente para os modelos baseados em kernel, bem como a viabilidade de uma ferramenta de apoio à decisão para orientar as escolhas de especialistas das melhores cultivares para enxertia. |