Sistema baseado em seleção dinâmica para previsão de casos de COVID- 19
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/49363 |
Resumo: | A pandemia da COVID-19 provocou 546 milhões casos e 20 milhões óbitos até 30 de junho de 2022, além disso gerou uma queda de 3% no PIB mundial em 2020. Um dos desafios no enfrentamento da doença é a previsão da quantidade de casos e óbitos, assim como a ten- dência de crescimento e decrescimento. Muitos trabalhos têm focado nessa tarefa, entretanto nenhum deles considerou a mudança de conceito nas séries temporais da COVID-19. Essas séries possuem basicamente três conceitos principais: crescimento exponencial, decrescimento e platô. Dessa forma, modelos que não tratam dessa questão podem apresentar baixa precisão em virtude da mudança na distribuição dos dados ao longo do tempo. Esse trabalho propõe o Concept Drift Dynamic Forecasting System (CODYS) para previsão de casos da COVID-19. O CODYS primeiramente realiza a detecção de conceitos na fase de treinamento para gerar um conjunto de preditores especialistas nos padrões encontrados. Na fase de teste, o método proposto seleciona dinamicamente a partir de uma região de competência o modelo mais apto para prever um dado padrão de teste. O CODYS foi avaliado utilizando conjuntos de dados dez países de diferentes continentes e graus de desenvolvimento. Os resultados mostram que o CODYS alcançou desempenho superior quando comparado com modelos de estatísticos, de aprendizado de máquina e ensembles. |