Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
CRUZ, Joicy Priscila de Araújo |
Orientador(a): |
SANTOS, Fábio Reis dos |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Matematica
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/41374
|
Resumo: |
Neste trabalho estudaremos hipersuperfícies tipo-espaço com curvatura média constante e, em particular, hipersuperfícies tipo-espaço máximas imersas em um espaço-tempo pp-wave satisfazendo a condição de convergência tipo-tempo (TCC). Primeiro faremos uma breve introdução ao espaço-tempo pp-wave e estabeleceremos a fórmula para o laplaciano de uma função suporte relacionado a hipesuperfície tipo-espaço neste espaço-tempo. Em seguida, mostraremos que toda hipersuperfície tipo-espaço máxima fechada (compacta sem bordo) é totalmente geodésica e em particular não há hipersuperfícies tipo-espaço fechada cuja curvatura média constante é diferente de zero. Além disso, exibiremos um exemplo de hipersuperfícies tipo-espaço máximas em espaços- tempo pp-wave. E assim, podemos apresentar resultados relacionados a curvatura gaussiana e parabolicidade que caracterizam superfícies máximas nessas variedades Lorentzianas e a partir desses resultados estabelecer sob qual hipótese as superfícies completas máximais são totalmente geodésicas. Finalmente, com base nos resuldados citados anteriormente mostraremos uma extensão para o clássico teorema de Calabi-Bernstein para superfícies máximas completas em espaço-tempo pp-wave 3-dimensional. |