Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
VILA NOVA, Ramon de Lima |
Orientador(a): |
LIMA, Rita de Cassia Fernandes de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Engenharia Mecanica
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/27978
|
Resumo: |
A técnica de inspeção através de imagens termográficas tem se mostrado um procedimento promissor com respeito ao diagnóstico precoce de anomalias mamárias. A termografia é um exame simples, indolor, não-invasivo, que não usa radiação ionizante e é de baixo custo. Cisto e tumores apresentam uma elevada atividade metabólica provocando variações de temperaturas nestas regiões que podem ser detectados através de uma avaliação adequada de termogramas. A detecção do tipo de anomalia é realizada por meio de uma análise das suas características e as anomalias podem ser avaliadas e separadas em classe com o auxílio de classificadores estatísticos. O presente trabalho tem como objetivo utilizar métodos de classificação de imagens termográficas. Para isso, são apresentadas duas propostas de classificação de imagens digitais. A primeira proposta consiste em utilizar um classificador de quatro classes (Maligno, Benigno, Cisto e Normal), baseado na distância mínima de Mahalanobis para dados intervalares. A segunda proposta consiste em realizar a combinação de classificadores com o objetivo de se obter melhores resultados de classificação para anomalias mamárias, dando ênfase à taxa de acerto (ou acurácia) e à sensibilidade à Classe Maligno. A primeira abordagem de classificação obteve 72,71% de taxa de acerto e 96,30% de sensibilidade à Classe Maligno. A segunda abordagem, que consiste na combinação de classificadores, obteve 71,15% de taxa de acerto e 87,18% de sensibilidade à Classe Maligno, para um classificador multiclasse (Maligno, Benigno, Cisto e Normal), enquanto que, para um classificador binário (Câncer e Não-Câncer), os resultados obtidos com a combinação de classificadores foram de 94,21% de taxa de acerto do classificador e 95,26% de sensibilidade à Classe Maligno. |