Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
MEDEIROS, Ícaro Rafael da Silva |
Orientador(a): |
FREITAS, Frederico Luiz Goncalves de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/2275
|
Resumo: |
Nos sistemas de tagging social usuários atribuem tags (palavras-chave) a recursos (páginas Web, fotos, publicações, etc), criando uma estrutura conhecida como folksonomia, que possibilita uma melhora na navegação, organização e recuperação de informação. Atualmente, esses sistemas são muito populares na Web, portanto, melhorar sua qualidade e automatizar o processo de atribuição de tags é uma tarefa importante. Neste trabalho é proposto um sistema que automaticamente atribui tags a páginas, baseando-se em múltiplas fontes de conhecimento como o conteúdo textual, estrutura de hiperlinks e bases de conhecimento. A partir dessas fontes, vários atributos são extraídos para construir um classificador que decide que termos devem ser sugeridos como tag. Experimentos usando um dataset com tags e páginas extraídas do Delicious, um importante sistema de tagging social, mostram que nossos métodos obtém bons resultados de precisão e cobertura, quando comparado com tags sugeridas por usuários. Além disso, uma comparação com trabalhos relacionados mostra que nosso sistema tem uma qualidade de sugestão comparável a abordagens estado da arte na área. Finalmente, uma avaliação com usuários foi feita para simular um ambiente real, o que também produziu bons resultados |