Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Rodrigues Pinheiro de Souza, Milena |
Orientador(a): |
Darmiton da Cunha Cavalcanti, George |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/2307
|
Resumo: |
Esta dissertação oferece contribuições para o problema de verificação de assinaturas off-line através da utilização de diferentes distâncias e classificadores de apenas uma classe. O uso de classificadores de uma classe viabiliza a utilização de apenas assinaturas verdadeiras durante a fase de treinamento do sistema. Isso é vantajoso pois em diversas aplicações reais de verificação de assinaturas existe uma carência de assinaturas falsas em detrimento do número de assinaturas verdadeiras. Esse trabalho também realiza uma comparação entre os resultados dos diferentes classificadores de uma classe escolhidos e de três métodos de extração de características implementados: Shadow Code, Características Periféricas e Diferenciais Periféricas e Elementos Estruturais. Afora isso, foram calculadas cinco distâncias utilizando as características extraídas: dmin, dmax, dcentral , dtemplate e dncentral . Essas distâncias foram normalizadas de forma a tornar o sistema independente de classe. E posteriormente combinadas usando as seguintes regras: produto, média, máximo, mínimo e soma. De forma a avaliar a contribuição de cada etapa no desempenho do sistema, este foi subdividido em quatro arquiteturas. Para isso, partiu-se de uma arquitetura mais simples, e foram sendo adicionadas novas etapas a ela. Dessa forma, foi possível identificar que, dentre as extrações utilizadas neste trabalho, o método Shadow Code obteve um grande destaque. O mesmo pode ser dito para as distâncias dcentral e dncentral , que apresentaram melhores resultados que as demais: dmin, dmax e dtemplate. As combinações das distâncias apresentaram resultados discrepantes, algumas combinações pioraram o desempenho do sistema, enquanto outras provocaram um efeito positivo. Foram utilizadas duas bases de dados: Base de Dados 1 (base de dados de assinaturas desenvolvida em pesquisa anterior) e Base de Dados 2 (base de dados de assinaturas disponibilizada em competição para sistemas de verificação de assinaturas). O melhor resultado geral do sistema, para a Base de Dados 1, e considerando 10% de falsos positivos, foi de 93,37% de verdadeiros positivos para as assinaturas falsas aleatórias, 59,18% para as assinaturas falsas habilidosas e 75,85% usando ambas |