Aplicações de aprendizado de máquina na detecção de anomalias em sistemas eólicos

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: XAVIER, Leonardo Mendes Sousa
Orientador(a): ROSAS, Pedro André Carvalho
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Engenharia Eletrica
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/56306
Resumo: Neste trabalho, é apresentada uma metodologia voltada para identificação de anomalias em aerogeradores, visando a antecipar variações de temperatura em compo- nentes críticos da máquina. Os elementos submetidos à análise incluem o rolamento da caixa de engrenagem e o rolamento drive-end do gerador. O estudo fundamenta-se na modelagem e aplicação de algoritmos de aprendizagem de máquina com o intuito de pre- ver a temperatura nesses componentes. Os algoritmos de regressão empregados abrangem a regressão múltipla linear, o aumento de gradiente extremo e uma rede neural recorrente denominada memória de curto longo prazo. Para modelagem das técnicas, são utilizados dados provenientes do sistema de supervisão de três aerogeradores pertencentes a um par- que eólico brasileiro composto por doze máquinas. Foi optado pela escolha de máquinas com comportamento de temperatura distinto entre si, a fim de avaliar se há variações relevantes no desempenho dos modelos de aprendizado diante de comportamentos térmi- cos distintos. Os dados das máquinas são submetidos a uma etapa de pré-processamento para identificar valores atípicos da operação normal dos aerogeradores. Posteriormente, os dados são divididos em conjuntos específicos para aplicação do algoritmo. No caso do modelo de aumento de gradiente extremo, foi empregada uma técnica de otimização Bayesiana para encontrar os parâmetros ótimos que se adéquam ao conjunto de dados pro- postos. Os resultados dos algoritmos de regressão são analisados sob a ótica das métricas de desempenho, e, ainda, são realizadas comparações entre as temperaturas reais e pre- vistas, dentro de limites de controle definidos, visando a identificação de anomalias na temperatura dos elementos estudados. Por fim, os modelos aplicados às três máquinas são comparados entre si para cada componente analisado. As principais vantagens deste modelo incluem sua capacidade em fornecer resultados excelentes para problemas com- plexos de previsão, baixo custo financeiro para implementação e alta adaptabilidade de implementação em outras máquinas.