Influência local em modelos espaciais lineares gaussianos, utilizando o método de máxima verossimilhança restrita

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: SANTOS, Eduardo Lucas Ensslin dos
Orientador(a): BASTIANI, Fernanda De
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Estatistica
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/35507
Resumo: O conhecimento da Geoestatística fundamenta-se no estudo de varíaveis aleatórias indexadas pela sua localização geográfica. A análise de métodos de diagnóstico de influência é frequentemente utilizada para indentificar a presença de observações potencialmente influentes nos dados e/ou no modelo, e avaliar a distorção que estas observações podem causar nos resultados das análises estatísticas. Nesse contexto, considera-se o estudo em modelos espaciais lineares Gaussianos, que levam em conta a dependência espacial das variáveis em estudo. Nesse caso a modelagem da estrutura de dependência espacial faz-se necessária para a definição dos parâmetros que a descrevem. O modelo também é considerado nas técnicas de interpolação, como a krigagem, que é utilizada para a predição de valores em locais não amostrados. No entanto, a estimatição dos parâmetros podem ser distorcidas pela existência de observações influentes. Nesse contexto, a principal contribuição desta dissertação é propor um esquema de pertubação na variável resposta para investigar a influência local em modelos espaciais lineares Gaussianos, considerando o método de máxima verossimilhança restrita para a estimação dos parâmetros. Realizaram-se estudos de simulação computacional e aplicação a dois conjuntos de dados reais.