Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
GOMES, Fernando Luiz Maia |
Orientador(a): |
AMARAL, Getúlio José Amorim do |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Estatistica
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/39648
|
Resumo: |
A captura de imagens em duas e três dimensões tem demandado novas metodologias estatísticas para modelar esse tipo de dados. Nesse contexto, surge a morfometria, que permite a análise de imagens de objetos a partir de marcos anatômicos. Várias análises são de interesse no contexto de morfometria. Dentre estas análises, surge a análise de agrupamento que corresponde à obtenção de grupos que sejam internamente homogêneos e heterogêneos entre si. Deve-se destacar que o espaço onde são estudados os vetores que representam os objetos são não- euclideanos. Dessa forma, é necessário definir algoritmos de agrupamento com distâncias apropriadas. A distância geodésica, por exemplo, é uma boa alternativa. O presente trabalho considera dois algoritmos de análise de agrupamento, que são o k-medóide e o fuzzy c-means. Estes métodos são comparados ao algoritmo k-means que já é utilizado na literatura. Resultados numéricos, que são baseados no índice de Rand, indicam que o algoritmo fuzzy é uma boa opção dentre os três métodos considerados. |