Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Cristiano Dos Santos Camelo, Marteson |
Orientador(a): |
Lucena, Sérgio |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/6906
|
Resumo: |
Devido a maior oferta de petróleos pesados e alto grau de contaminantes que os derivados deste possuem, os processos de hidrorrefino têm recebido atenção especial ao longo dos últimos por possibilitar a remoção de contaminantes e melhorar a margem de lucro das refinarias por tonar possível a obtenção de derivados de maior valor agregado. Entre esses o processo de hidrotratamento (HDT), no qual ocorre uma série de reações que utilizam o gás hidrogênio como reagente, foi o foco de estudo deste trabalho. Ao ser aplicado em correntes de Diesel o HDT realiza a remoção de contaminantes como enxofre e nitrogênio, aumentando a qualidade do mesmo. A unidade de HDT tem como principal equipamento o reator, que consiste em um leito com partículas sólidas, onde gás e líquido escoam em fluxo co-corrente ou em contracorrente. Apesar deste processo já ser maduro, o crescente aumento nas exigências de mercado demandam por melhorias no mesmo, a fim de atingir uma rentabilidade cada vez maior. Desta forma o uso de inferenciadores na estimação das variáveis tornaria possível o melhor acompanhamento do processo como também a implementação de novas estratégias de controle. Visto a relevância desse tema o presente trabalho abordou o desenvolvimento de observadores de estado para o reator do processo de HDT, para isto foi necessário a aquisição de dados do processo, o que foi conseguido através de um modelo matemático do reator, o qual foi denominado como planta virtual. Esta forneceu os dados para treinamento e validação dos inferenciadores aqui estudados: as redes neuronais e a neuro-fuzzy. No decorrer do trabalho foi definido o tempo de amostragem e o período de excitação do sinal através da menor constante de tempo. Para treinamento dos inferenciadores foi utilizado dois bancos de dados distintos, um com tempo de amostragem de 50s, onde este foi obtido pelo método da constante de tempo, e outro com amostragem de 10 minutos, em que as seguintes variáveis foram inferenciadas: concentração de compostos sulfurados, nitrogenados e olefinas na saída do reator. Dessas o melhor resultado foi obtido na inferência da concentração de compostos sulfurados realizada através da Rede Neuronal. Foi escolhida esta rede neuronal na implementação de um controlador PID e como modelo interno de um controlador NNMPC. O controlador PID cuja variável de controle foi à concentração de sulfurados foi chamado de controlador PID inferencial e os resultados deste se mostraram melhores do que os resultados obtidos pelo controlador NNMPC |