Otimização sob incertezas de estruturas com comportamento não linear utilizando modelos de ordem reduzida

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: MOTTA, Renato de Siqueira
Orientador(a): AFONSO, Silvana Maria Bastos
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UNIVERSIDADE FEDERAL DE PERNAMBUCO
Programa de Pós-Graduação: Programa de Pos Graduacao em Engenharia Civil
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/15031
Resumo: Nas ultimas décadas o tópico de otimização tem ampliado suas aplicações e tem sido bastante aprimorado devido principalmente ao crescimento da capacidade computacional. Entretanto, na maioria das aplicações na engenharia, a abordagem tradicional é considerar modelos determinísticos. Porém algum grau de incerteza ou variação de parâmetros na caracterização de qualquer sistema estrutural é inevitável. Infelizmente a abordagem determinística pode levar a soluções cujo desempenho pode cair significativamente e/ou restrições podem ser violadas devido a perturbações decorrentes de incertezas. Neste trabalho, serão examinadas algumas abordagens para a consideração das incertezas no processo de otimização e assim obter projetos robustos e confiáveis em estruturas com comportamento não lineare. Um projeto robusto é aquele que apresenta, além de bom desempenho, uma baixa variabilidade às incertezas do problema. As medidas de robustez utilizadas aqui foram: a média e a variância da função de interesse. Quando se usa ambas as medidas, à busca por um projeto robusto ótimo, surge como um problema de decisão com múltiplos critérios (otimização multiobjetivo robusta). Para o calculo dos parâmetros estatísticos serão empregadas duas técnicas de análise de propagação de incerteza, o método de Monte Carlo (MC) e o método da colocação probabilística (Probabilistic Collocation Method - PCM). Quando se considera além da robustez, a confiabilidade estrutural, tem-se então, um problema de otimização robusta baseada em confiabilidade (RBRDO, Reliability-Based Robust Design Optimization). Neste tipo de problema, alguma restrição associada à probabilidade de falha está presente em sua formulação. Dois métodos para o cálculo da probabilidade de falha da estrutura foram investigados: o MC e o FORM (First Order Reliability Method). Para avaliar a restrição de confiabilidade em um procedimento de otimização, serão utilizadas duas abordagens: uma abordagem chamada RIA (Reliability index approach), onde é necessário calcular a probabilidade de falha (ou índice de confiabilidade) de cada novo projeto e uma abordagem denominada PMA (Performance Measure Approach), para lidar com este tipo de restrições sem a necessidade do cálculo direto da probabilidade de falha. Serão abordados aqui, problemas que envolvem análise não-linear, utilizando o POD (“Proper Orthogonal Decomposition”) para a redução da ordem do modelo computacional e consequentemente, o tempo computacional. As estruturas consideradas são treliças planas e espaciais e estruturas 2D (estado plano) com as considerações das não linearidades físicas e geométricas.