Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
QUINTELA, Rodolpho Jórdan Domingos |
Orientador(a): |
MANGHI, Roberto Ferreira |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Estatistica
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/38528
|
Resumo: |
Esta dissertação tem como objetivo propor resíduos e técnicas para a análise de diagnóstico nos Modelos Parcialmente Lineares Aditivos Generalizados (MPLAGs), tais como: alavancagem generalizada, análise de resíduos, dois quais propomos utilizar os resíduos de Pearson e resíduos aleatorizados, bem como medidas para análise de influência local sob os seguintes esquemas de perturbação: perturbação de de casos, perturbação na variável resposta e perturbação em uma das variáveis explicativas. Para isto, derivamos tais medidas fundamentados em uma vasta pesquisa bibliográfica e conceitual sobre tais métodos no contexto dos MPLAGs. Essas técnicas foram utilizadas em exemplos de aplicação a dados reais e os resultados foram discutidos a fim de avaliar o nosso estudo teórico. Para tanto, apresentamos as equações de estimação para os parâmetros do modelo através da função de verossimilhança penalizada, considerando como estrutura não paramétrica o uso de P-splines. Assim, definimos tal modelo, buscando apresentar algumas propriedades e vantagens que motivam o uso de P-splines no contexto de regressão não paramétrica. Por fim, o método iterativo backfitting (Gauss-Seidel) é utilizado para a obtenção das estimativas. |