Rastreamento de vídeo com aprendizagem em tempo real

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Prata, Thiago Lessa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/11833
Resumo: Em visão computacional, a área de rastreamento de objetos tem crescido enormemente. O aumento do poder computacional na última década tem permitido que aplicações em tempo real sejam agora possíveis. Em particular, o ramo de rastreamento de objetos tem se beneficiado com essa evolução e agora é utilizado em diversas aplicações desde a área de segurança até a de entretenimento. As primeiras técnicas se baseiam principalmente no vetor de movimento de sub-regiões da imagem e comparação entre as sub-regiões de um quadro do vídeo com o seguinte. Com isso, uma pontuação é computada para cada posição no quadro seguinte no qual o objeto alvo tem maior probabilidade de estar e a posição com maior valor é escolhida como a sua nova posição. Esses rastreadores normalmente são chamados de rastreadores de curto prazo, isso porque uma vez que o objeto é perdido de vista não é possível que ele volte a ser rastreado. Em contrapartida, visando continuar o rastreamento mesmo quando ele é perdido por algum tempo, nos últimos anos uma nova classe de rastreadores foi criada: os rastreadores por detecção. Nestes métodos, uma fase de rastreamento define a posição do objeto em um quadro a partir da sua posição no quadro anterior. Além da fase de rastreamento, uma fase de detecção visa encontrar o objeto sem que haja qualquer dependência com o seu histórico de posicionamento. A resposta de cada uma das duas técnicas é combinada de forma que a nova posição seja determinada. Quando o rastreamento é perdido por causa de alguma condição de ruído (como oclusão ou algum movimento rápido), a detecção é utilizada para reinicializar o rastreamento, o que possibilita a criação de um rastreador de longo prazo. Visando construir tal tipo de rastreador, o presente trabalho elabora um método de rastreamento por detecção. Mais especificamente, o principal objetivo da técnica elaborada é rastrear um objeto em um cenário complexo onde existam outros objetos semelhantes com problemas de difícil tratamento como oclusão, mudança de escala e mudança de pose. Para que isso seja possível, foi utilizado um esquema baseado em detecção, rastreamento e aprendizagem. Na fase de rastreamento, um rastreador de curto prazo comum e consolidado é utilizado. A fase de aprendizagem tem a função de selecionar amostras para o treinamento do módulo de detecção. A fase de detecção é constituída por quatro classificadores em cascata. Dentre eles, o classificador online cascade boosted classifier (OCBC) é utilizado, uma das principais contribuições deste trabalho. O OCBC é um detector do tipo cascata que possui um treinamento em tempo de execução. O método criado foi testado utilizando várias bases de rastreamento de faces com diversos níveis de dificuldade e os resultados mostraram um avanço em relação ao estado da arte.