Detalhes bibliográficos
Ano de defesa: |
2003 |
Autor(a) principal: |
ALMEIDA, Marcelo Barbosa de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/2502
|
Resumo: |
O principal objetivo desta dissertação é fazer um estudo sistemático sobre os diversos tipos de redes neurais artificiais (e seus respectivos algoritmos de aprendizagem) que vêm sendo utilizados na implementação do sistema de reconhecimento de padrões do nariz artificial proposto em [Santos, 2000], apontando suas vantagens e desvantagens. Os modelos analisados são as Multi-layer Perceptrons (MLPs) com o backpropagation, Levenberg-Marquardt e tabu search, e as redes de funções de base radiais (Redes RBF). Também serão investigadas as MLPs com o Resilient backpropagation (Rprop). O algoritmo Rprop foi escolhido por duas razões principais: em geral ele possui um tempo de convergência inferior ao tradicional backpropagation, e até o momento não existe na literatura nenhum trabalho que aplique este algoritmo (junto com as MLPs) como parte do sistema de reconhecimento de padrões do nariz artificial estudado. Para cada modelo de arquitetura (por exemplo, MLP) e algoritmo de treinamento (por exemplo, backpropagation) três topologias diferentes serão investigadas. Para cada uma destas topologias serão feitas trinta inicializações de pesos diferentes (aleatórias), em que cada uma destas inicializações será executada com cada uma das três diferentes partições do conjunto de dados. A partir disto, os resultados obtidos serão analisados através de testes estatísticos (teste de hipóteses). Isto tudo contrasta com os trabalhos anteriores, os quais usavam apenas uma partição dos dados, somente dez execuções para cada topologia, e nenhum teste estatístico era feito |