Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Lopes, Gilliard Alan de Melo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/11995
|
Resumo: |
Esta dissertação apresenta um novo algoritmo para segmentação de sinais de voz baseado em técnicas de processamento de imagem, tais como análise de espectrograma, morfologia matemática, componentes conectados, análise de projeção e binarização. O algoritmo proposto opera em dois ciclos: o primeiro age separando o sinal de voz do fundo (silêncio ou ruído). O segundo utiliza esse sinal de voz segmentado para realizar a segmentação de sílabas fonéticas (agrupamento de fonemas). A base de dados de áudio MIT (MIT Mobile Device Speaker Verification Corpus) e a TIMIT (Texas Instruments/Massachussets Institute of Technology) foram utilizadas para validação do algoritmo proposto. Os sinais de voz escolhidos variam desde o gênero do locutor, a regionalidade (sotaque), tipos de fonemas e ruídos de fundo, como: ruídos de apito, chuva, vento e de um cruzamento de ruas com tráfego intenso. A técnica proposta mostrou eficiência na segmentação, no que diz respeito aos segmentos fonéticos, em ambientes com ausência e presença de ruídos, utilizando os mesmos parâmetros em ambas as situações |