Inferência e diagnóstico em modelos não lineares Log-Gama generalizados

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: SILVA, Priscila Gonçalves da
Orientador(a): CYSNEIROS, Audrey Helen Mariz de Aquino
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Estatistica
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/18637
Resumo: Young e Bakir (1987) propôs a classe de Modelos Lineares Log-Gama Generalizados (MLLGG) para analisar dados de sobrevivência. No nosso trabalho, estendemos a classe de modelos propostapor Young e Bakir (1987) permitindo uma estrutura não linear para os parâmetros de regressão. A nova classe de modelos é denominada como Modelos Não Lineares Log-Gama Generalizados (MNLLGG). Com o objetivo de obter a correção de viés de segunda ordem dos estimadores de máxima verossimilhança (EMV) na classe dos MNLLGG, desenvolvemos uma expressão matricial fechada para o estimador de viés de Cox e Snell (1968). Analisamos, via simulação de Monte Carlo, os desempenhos dos EMV e suas versões corrigidas via Cox e Snell (1968) e através da metodologia bootstrap (Efron, 1979). Propomos também resíduos e técnicas de diagnóstico para os MNLLGG, tais como: alavancagem generalizada, influência local e influência global. Obtivemos, em forma matricial, uma expressão para o fator de correção de Bartlett à estatística da razão de verossimilhanças nesta classe de modelos e desenvolvemos estudos de simulação para avaliar e comparar numericamente o desempenho dos testes da razão de verossimilhanças e suas versões corrigidas em relação ao tamanho e poder em amostras finitas. Além disso, derivamos expressões matriciais para os fatores de correção tipo-Bartlett às estatísticas escore e gradiente. Estudos de simulação foram feitos para avaliar o desempenho dos testes escore, gradiente e suas versões corrigidas no que tange ao tamanho e poder em amostras finitas.