Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Uilma Rodrigues dos Santos de Sousa, Maria |
Orientador(a): |
Jorge Leitão Adeodato, Paulo |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/2315
|
Resumo: |
A celeridade processual das Cortes de Decisão indica grau de desenvolvimento das nações. A morosidade processual, por sua vez, pode ser usada para medir o seu nível de subdesenvolvimento, uma vez que causa prejuízos sociais, ao erário e, mais especificamente, ao cidadão que é parte em um processo. No Brasil, trata-se de um problema real, de larga escala, cuja solução ainda não foi investigada usando as técnicas de mineração de dados, conforme demonstra a pesquisa realizada em todos os 33 (trinta e três) Tribunais de Contas nacionais. Este trabalho investiga a aplicação de mineração de dados como metodologia de tecnologia da informação para apoio à solução do problema da morosidade processual e do retrabalho, que resultam em aumento dos estoques de processos nas Cortes de Decisão. As bases de dados foram integradas, os dados foram transformados, o conhecimento foi extraído e o desempenho dos modelos avaliado. Para extração do conhecimento, foram utilizadas técnicas de Inteligência Artificial, tradicionalmente aceitas: Regras de Classificação, para a descrição das condições que influenciam o problema e, Redes Neurais Artificiais, para a construção dos classificadores. A qualidade da solução desenvolvida e sua aceitação pelos especialistas no domínio mostraram a viabilidade de utilizar Mineração de Dados para apoio à decisão gerencial na administração do estoque de processos dos Tribunais de Contas. Para o estudo de caso foram utilizados os dados do Tribunal de Contas do Estado de Pernambuco |