Abordagem Kernelizada Para Análise Discriminante Generalizada

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Queiroz, Diego Cesar Florencio de
Orientador(a): Souza, Renata Maria Cardoso Rodrigues de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/11636
Resumo: Diferentes modelos clássicos já foram estendidos para a classificação de dados simbólicos de natureza intervalar, como regressão logística e discriminante linear, entre vários outros, contudo a maior parte desses classificadores foi desenvolvida para a resolução de problemas linearmente separáveis, não possuindo um bom desempenho face à problemas não-linearmente separáveis. Esse trabalho introduz duas abordagens baseadas no modelo de discriminante linear generalizado para classificar dados simbólicos intervalares. Nessas abordagens duas famílias de funções de kernel foram utilizadas separadamente para transpor os dados para um espaço de alta dimensão, permitindo a classificação de problemas não linearmente separáveis. Tal transposição é realizada através do kernel trick utilizando o produto escalar convencional e o produto escalar kernelizado para dados intervalares. Experimentos com conjuntos de dados sintéticos, híbrido entre sintético e real e uma aplicação com um conjunto de dados intervalares real demonstram a funcionalidade e eficiência dessa abordagem.