Efeitos cardiovasculares de um novo doador de óxido nítrico, 12-nitrato-cis-9-octadecanoato de etila (NCOE), em ratos

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Machado, Natália Tabosa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraí­ba
BR
Farmacologia
Programa de Pós Graduação em Produtos Naturais e Sintéticos Bioativos
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/tede/6778
Resumo: The organic nitrates are classified as drugs donors of nitric oxide (NO) that might potentially be useful in the treatment of cardiovascular diseases, principally to mimick endogenous NO. A new-found organic nitrate, the nitrate-12- cis- 9- ethyl octadecanoate (NCOE), synthesized from ricinoleic acid from castor oil, was studied in order to evaluate its cardiovascular effects, using in vivo and in vitro approaches. In normotensive rats, NCOE (10, 20, 30, 40 and 60 mg /kg, iv) induced hypotension (2.5 ± 0.9, -3.9 ± 0.7, -31.0 ± 6.6, -40.6 ± 3.9 and -50.4 ± 3.5%) and bradycardia (-5.6 ± 0.9, -8.9 ± 1.0, -57.2 ± 8.9; -70.9 ± 5.3 and -77.9 ± 2.7%) transients, both dose-dependent effects. In isolated rat superior mesenteric artery rings pre-contracted with phenylephrine (Phe) (1 mM), NCOE (10-10-10-3 M) induced a concentration-dependent vasorelaxation in presence (MR = 107.3 ± 4.43%; pD2 = 5.59 ± 0.06) or absence (MR = 118.0 ± 3.5%; pD2 = 5.90 ± 0.05) of endothelium, suggesting a NCOE effect independent of endothelium-derived factor. All subsequent experiments were performed in the absence of endothelium. The NCOE effect was attenuated after a contraction induced by depolarizing solution with high K+ (MR = 92.0 ± 4.1%) compared to the nitrate effect on Phe-contractions. The pre-incubation with PTIO (300 mM), a free radical form of NO (NO●) scavenger, attenuated the NCOE vasorelaxation potency (pD2 = 5.10 ± 0.05), suggesting NO● involvement in the nitrate effect. However, in the presence of L-cysteine (3 mM), a reduced form of NO (NO-) scavenger, NCOE response was potentiated (pD2 = 6.34 ± 0.03). Similar effect was observed in the presence of N-acetylcysteine (NAC) (3 mM), a free radicals intracellular scavenger (pD2 = 6.56 ± 0.05). The NCOE effect was not altered in the presence of proadifeno (10 mM), an inhibitor of cytochrome P450 (pD2 = 5,99 ± 0,07%). However, the vasodilation was reduced in the presence of cyanamide (1 mM), inhibitor of mitochondrial aldehyde dehydrogenase (mtALDH) (MR = 94.3 ± 6.26%), and of ODQ (10 μM), inhibitor of soluble guanylyl cyclase (sGC) (MR = 55.2 ± 3.60%), suggesting these enzymes involvement in NCOE response. After preincubation with TEA (3 mM), a K+ channels non-selective blocker, the nitrate vasorelaxation was reduced (MR = 107.1 ± 7.09), demonstrating the participation of these channels in nitrate effect. When using iberiotoxin (100 nM) and glibenclamide (10 μM), KATP and BKCa selective blockers, respectively, the vasodilatory effect was reduced (MR = 106.2 ± 1.49%; pD2 = 5.61 ± 0.04, respectively), although the effect was not modified in the presence of 4-aminopyridine (1 mM), KV blocker (pD2 = 5,70 ± 0,04%). Furthermore, NCOE increased NO levels in rat aorta smooth muscle cells, detected by NO-sensitive dye DAF-2T. These results together suggest that NCOE induces hypotension and bradycardia transients, and promotes vasorelaxation due NO● release through the compound metabolism via mtALDH and consequent sGC, KATP and KBCa activation.