Equações de Schrödinger quaselineares com potenciais singulares ou se anulando no infinito
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal da Paraíba
Brasil Matemática Programa Associado de Pós-Graduação em Matemática UFPB |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpb.br/jspui/handle/tede/9254 |
Resumo: | In this work, we study existence of standing wave solution for a class of quasilinear Schrödinger equations involving potentials that may be singular at the origin or vanishing at infinity. For dimensions bigger than two, we consider nonlinearities with subcritical growth. In dimension two, we work with nonlinearities having exponential critical growth. To obtain our results, we have used variational techniques, more specifically, a version of the Mountain Pass Theorem, a regularity result of Brézis-Kato type, arguments of symmetrical criticality principle type, Moser iteration method and a Trudinger-Moser type inequality. |