Contribuição à análise estática e dinâmica de pórticos pelo Método dos Elementos de Contorno
Ano de defesa: | 2012 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal da Paraíba
BR Engenharia Mecânica Programa de Pós-Graduação em Engenharia Mecânica UFPB |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpb.br/jspui/handle/tede/5355 |
Resumo: | This paper describes elastic, static and dynamic analysis of frames using the Boundary Element Method (BEM). The superstructure is modeled for two frame structure cases (that is, plane frame and space frame) and algebraic specific representations are developed for these purposes. According to the specific cases, bending effects (Euler- Bernoulli or Timoshenko models), torsional effects (under Saint Venant assumptions) are properly operated as well as the explicit forms of displacements and efforts influence matrices and the body force vector. Special attention is paid to the problem of static soil-structure interaction. In this case the superstructure (space frame) is modeled by BEM and the soil (assumed as semiinfinite elastic solid) is represented by integral equations and algebraically systematized in BEM fashion as well. Then, the superstructure and soil algebraic systems are coupled in order to allow the soil-structure interaction analysis. Open section thin-walled beams under Vlasov torsional-flexure assumptions receive also special attention, so that a direct BEM formulation for static and vibration analysis is established. Hence, here it is propposed integral equations, fundamental solution and algebraic representations which incorporate all secondary fields (forces, moments and bimoment) and primary fields (displacements, rotations and warping). For vibration case, both integral and algebraic equations are deduced for bi-coupled problems ( monosymmetric cross-section) and triply-coupled problems (nonsymmetric cross-sections). |