Tradução automática com adequação sintático-semântica para LIBRAS

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Lima, Manuella Aschoff Cavalcanti Brandão
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Informática
Programa de Pós-Graduação em Informática
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/tede/7847
Resumo: Deaf people communicate naturally using visual-spatial languages, called sign languages. The sign languages (SL) are recognized as official languages in many countries, but the problems faced by deaf people to access to information remains. As a result, they have difficult to exercise their citizenship and to access information in LS. In order to minimize this problem, some works have been developed related to the machine translation of spoken languages to sign languages. However, these solutions have some limitations, since they have to generate contents for deaf with the same quality to the listeners. Thus, this work aims to develop a solution for machine translation to Brazilian Sign Language (LIBRAS) addressing syntactic-semantic issues. This solution includes a LIBRAS machine translation component; a rule description language, modeled to describe morphosyntactic-semantic machine translation rules; the definition of a grammar exploring these aspects; and the integration of these elements with VLibras, a machine translation service of digital contents in Brazilian Portuguese to LIBRAS. To evaluate the solution, some computational tests were performed using WER and BLEU metrics, along with some tests with Brazilian deaf users and LIBRAS specialists. The results show that the proposed approach could improve the results of the current version of VLIBRAS.