Desenvolvimento e avaliação antimicrobiana “in vitro” de nanofibras de PLA/PEG com Terpinen-4-OL e clorexidina contra aggregatibacter actinomycetemcomitans
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal da Paraíba
Brasil Odontologia Programa de Pós-Graduação em Odontologia UFPB |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpb.br/jspui/handle/tede/9096 |
Resumo: | To determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of terpinen-4-ol and chlorhexidine produce and characterize nanofibers PLA / PEG incorporated with terpinen-4-ol and chlorhexidine as well as quantifying the viability biofilm mobile Aggregatibacter actinomycetemcomitans (Aa) (ATCC 00078) grown on the surface of this inhibitory fiber. Methodology: The determination of MIC and MBC was performed by broth microdilution; the nanofiber terpinen-4-ol (40%) and chlorhexidine (0.12%) were produced by spinning blow solution (SBS) and characterized by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), calorimetry differential scanning (DSC) and infrared spectroscopy by Fourier transform (FTIR). The cell was observed by fluorescence quantification and nanofibers incorporated with chlorhexidine served as positive control for this assay. Results: There was an effective antimicrobial activity terpinen-4-ol (MIC and MBC = 25 mg / mL) and chlorhexidine (MIC and MBC <15 mg / mL) on planktonic cells pa PEG acted as a plasticizer resulting in a reduction in the crystallinity of the PLA, increased fiber diameter and lightweight thermal destabilization of the material. The increase in PEG concentration was not decisive for increasing the antimicrobial activity of the fibers but has contributed to formation of a more amorphous material. The terpinen-4-ol fibers showed similar antimicrobial activity to chlorhexidine fibers (p <0.05), and the Terpinen-4-ol fiber with 20% PEG had best performance among your group. Conclusion: The terpinen-4-ol and chlorhexidine had effective antimicrobial activity against A.A and SBS technique was effective in the production of PLA nanofibers / PEG antimicrobial action against A.A having the potential to drive future applications to combat periodontal disease. |