Álgebras simétrica e de Rees do módulo de diferenciais de Kähler

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Sousa, Fraciélia Limeira de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Matemática
Programa de Pós-Graduação em Matemática
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/tede/8073
Resumo: In this dissertation, we initially present an overview about the symmetric and the Rees algebras in the wide context of modules, and we consider particularly the special situation in which the given module possesses a linear presentation. In the sequel, the main goal is the study of such blowup algebras in the case where the module is the celebrated module of K ahler di erentials, the focus being given on the investigation of an interesting version of the long-standing Berger's Conjecture for the symmetric algebra, as well as on the study of fundamental properties such as: integrality, Cohen- Macaulayness and normality; these properties are also investigated in a special way in the case of the Rees algebra (of the di erential module), highlighting the connection to the so-called Fitting conditions.