Microemulsões combustíveis a partir do óleo de babaçu para substituir o diesel em motores estacionários.
Ano de defesa: | 2012 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal da Paraíba
BR Química Programa de Pós-Graduação em Química UFPB |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpb.br/jspui/handle/tede/7073 |
Resumo: | Vegetable oils can be used as alternative for diesel fuel, due to their combustion characteristics and low environmental impact. However, due to their fluid dynamic properties its usage "in nature" is limited. But they may be used as a component for microemulsion fuels. In such context, the present work aims to obtain, characterize and evaluate the combustion properties of three different babassu microemulsions. Therefore, pseudo-ternary phase diagrams were constructed for each system. According to the phase diagrams, the following homogeneous regions were selected: MAIb consisting of 54:3:43 %(m/m.) (refined babassu oil: distilled alcohol: isobutyl alcohol); MAIa consisting of 51:1:48 %(m/m.) (refined babassu oil: distilled alcohol: isoamyl alcohol); MEF consisting of 49:5:46 %( m/m) (refined babassu oil: hydrated ethanol fuel: fusel alcohol). Then, all samples were evaluated using light scattering test (LST), being observed microemulsion characteristic droplet sizes: 3.80 (MAIb), 1.55 (MAIa) and 26.0 (MEF) nm. Later, new pseudoquaternary systems were obtained by blending the pseudo-ternary microemulsions with diesel [10, 20 and 30% (wt./wt.)]. All samples were characterized by kinematic viscosity at 40 ° C, density at 20 ° C, flash point, turbidity and acidity index. The emission levels and cetane number were determined for each systems. It was observed a decrease of CO and an increase of NOx emissions for the system MEF and for system which contain 30% and 100% of the MAIa. All other mixing systems emitted less NOx than diesel. All systems tested have lower cetane number than diesel. It follows that microemulsions can be used as fuel in partial or total replacement of diesel, in a wide variety of compositions, most available in remote locations. |