Análise teórica do escoamento bifásico e/ou dois-fluidos imiscíveis anular ascendente via GITT

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Ruas, Patrícia Haueisen Dias
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Engenharia Mecânica
Programa de Pós-Graduação em Engenharia Mecânica
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/tede/8965
Resumo: The present paper makes an analysis of multiphase flow up (oil-gas) in laminar regime, with hidrodynamically developed profiles and interacting heat. The fluids analyzed are considered immiscible, developing into separated speed and temperature fields. The energy equations are applied to obtain of heat fields in the thermal entry region of the fluids flowing in the same direction. Although the results of parameters of practical interest has been obtained by purely numerical procedures, the system governing equations involving partial differential and have not been resolved successfully analytically yet. Thus, the use of Generalizes Integral Transform Technique, as powerful mathematical tool, is proposed to solve the energy equations associated with the flow and to producing hybrid results, analytical-numerical, more extension e analysis flexibility to a large number of parameter used in oil and gas engineering. Auxiliary problems with the greatest possible number of original problem information are presented in an attempt of improving the numerical convergence. Lastly, a computational routine is developed in FORTRAN to obtain the numerical solution. The numerical results obtained for the fields are presented in tables and graphs for then be compared with the maximum care to the parameters of special cases available in the literature.