Uma prova da conjectura do anulamento de Serre via K-teoria algébrica

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Araújo, José Carlos de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Matemática
Programa de Pós-Graduação em Matemática
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/123456789/20932
Resumo: Considerer a commutative local Noetherian regular ring (A, m) and let p and q be two prime ideals of A such that `A(A/p ⊗A A/q) < ∞. In 1958, Jean Pierre Serre defined the intersection multiplicity of A/p e A/q by χ(A/p, A/q) := X∞ i=o (−1)i `A(Tori A(A/p, A/q)), and he conjectured, among other things, that if dim(A/p) + dim(A/q) < dim(A), then χ(A/p, A/q) = 0. Such conjecture became known as Serre vanishing conjecture. This was proven by Paul C. Roberts and, independently, by Henri Gillet and Christophe Soulé in 1985. The main of this dissertation is to illustrate and detail, following the ideas of Gillet e Soulé, how some notions and machinery of algebraic K-theory can be used to prove such conjecture.