Aplicações de técnicas de controle Fuzzy em sistemas de abastecimento de água visando melhoria no rendimento energético e hidráulico
Ano de defesa: | 2012 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal da Paraíba
BR Engenharia Mecânica Programa de Pós-Graduação em Engenharia Mecânica UFPB |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpb.br/jspui/handle/tede/5360 |
Resumo: | This paper presents the development of a fuzzy system, in LabviewTM environment for the pressure control of distribution of water through two sets of motor-driven pump drives. The drive motor-pump sets is accomplished with three-phase induction motors with variable speed in order to save electricity and water. For this we developed an experimental bench instrumentalized emulating a real supply system. The proposed system consists of motor-pump assemblies in parallel due to varying flow demand required. These two charging system to generate a large number of possibilities mode associations of the motor-pump assemblies with different rotational speeds. The Fuzzy controller identifies the best option for the energy consumption and system performance and makes the decision alluding to the state of the engines (on, off or partial rotation speed). This entire process is performed under the condition of meeting the demand flow system, and maintain constant pressure at a predetermined value. To validate the controller were performed several tests that proved the efficiency of the control system and its influence on the consumption of electricity and water. It can be concluded that the performance of the fuzzy system has proved satisfactory, and can be deployed with relative ease other water distribution systems with similar characteristics. The results brought, besides the reduction of energy consumption, conservation of pressure at constant levels, increasing the degree of system reliability and the probable reduction of maintenance costs. |