Método da matriz de transferência para luz em sistemas de multicamadas dielétricas : axiônica e temporal
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal da Paraíba
Brasil Física Programa de Pós-Graduação em Física UFPB |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpb.br/jspui/handle/123456789/32441 |
Resumo: | This thesis delves into fundamental aspects of photonic structures, presenting two distinct works on light transport in one-dimensional dielectric alternating multilayer systems: The first work explores the propagation of circularly polarized electromagnetic waves in a one-dimensional axionic photonic crystal, characterized by electrical permittivity (‘), magnetic permeability (μ), and the topological parameter (◊). Using the transfer matrix method (TMM), the study establishes a direct correlation between the dispersion relation, bandgap characteristics, and material properties represented by geometric (X), physical (R), and topological (”) parameters. Numerical analysis reveals the independence of the topological parameter ◊ from geometric and physical parameters, with intriguing implications. This underscores the significance of the topological parameter in controlling light transport within axionic photonic crystals, paving the way for the construction of photonic crystals using materials with topological properties. The second work introduces preliminary findings on the propagation of electromagnetic waves in one-dimensional temporal photonic quasicrystals following Fibonacci, Thue–Morse, and Double–Period sequences. Employing the transfer matrix technique (TMM), the study calculates the dispersion ratio for electromagnetic modes, revealing a direct correlation with material properties represented by temporal (tBA) and physical (nBA) parameters. The presented band structures exhibit forbidden regions in the ˛k wave vector spectrum, indicating limited light transport within specific wavenumber regions. Multiple bandgaps emerge in the quasiperiodic band structures due to layer growth in the unit cell, displaying a self-similarity pattern concerning the number of generations. Variations in the number of generations lead to a fragmentation process in both allowed and forbidden bands. The study also illustrates a self-similarity pattern in the wave vector spectra ˛k concerning the number of generations (n). Overall, this work suggests the possibility of new allowed bands emerging in previously forbidden regions of the ˛k wave vector spectra, offering a compelling alternative for light transport by modifying the number of generations in these sequences. |