Estudo teórico e experimental de um chiller a adsorção para sistemas de ar condicionado solar

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Vodianitskaia, Paulo José
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Engenharia Mecânica
Programa de Pós-Graduação em Engenharia Mecânica
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/tede/8957
Resumo: Human society in general, and Brazil in particular, face severe scenarios, from restricted energy supply to climate change and other challenges for a sustainable future. Thus renewable energy alternatives offering lower environmental and social impacts such as solar energy are subjects of special interest. The present work refers to this challenging picture. As a way to apply renewable energy, solid adsorption air conditioning favors energy security and contributes to the mitigation of greenhouse gases due to the lower dependency in regard to primary energy. It allows to a reduction on demand peaks, and to a natural adjustment between supply and demand levels. Moreover, the materials used in such systems present low environmental impact, especially the refrigerant fluid: water, abundant in nature and non-toxic. The general objective of this work is the development of an experimental chiller using local technology, resulting in a state-of-the-art performance level. Specific objectives include the development of a representative model for the adsorber, the comparison of adsorption kinetics between two fractions of silica gel, the evaluate how specific heat and mass diffusion influence the chiller performance. The numerical model contributions are related to the use of specific heat of the adsorbed phase, and mass diffusion for cycle characterization. The model resulted representative of the experimental behavior. COP was found to be 0,53 and SCP is 68 W/kg for 2.0 mm beads. These values are comparable or higher to the ones reported in literature for silica gel in loose grains. The use of a crushed silica gel of smaller size (026 mm) resulted in lower level of performance, which is probably due to the reduction of porosity after crushing.