Níveis de Landau-Coriolis

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Silva, Júlio Eloísio Brandão da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Física
Programa de Pós-Graduação em Física
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/tede/9515
Resumo: Inertial effects, such as Coriolis’ and centrifuge forces play an interesting role on classical mechanics and currently has been largely used in quantum mechanics, including in analogies with the electromagnetic effects. However, these analogies between the inertial forces on the massives particules and the electromagnetic forces on charged particles is not new. They were explored by Aharonov and Carmi in 1970 and by Tsai and Nelson in 1988 in the context of a rotational quantum phase like an Aharonov-Bohm phase. Based in this analogy, Dattoli and Quattromini, introduced Coriolis’ analogue quantum states to Landau levels. In 1915, Barnett had already published a paper about magnetization due to rotation which recently had a renewed interest applyed to nanostructures. A rotational analogy of the classical Hall effect was proposed and rotational inertial forces were studied in spintronic. Energy spectra like Landau levels appear under the action of Coriolis forces when the centrifuge force acting on free electrons is compensated by a radial electric field. In this work, we will demonstrate effects caused by rotation and magnetic field in a spinning conductor disc. We will study both the electromagnetic and inertial interactions simultaneously. Some values to the relation between the magnetic field and the rotation will be chosen and this will result in Landau-like levels to a system with resultant force composed by Coriolis’ and magnetic forces. A similar behavior for the energy spectrum will be found without a magnetic force composing the resultant force.