Fusion of online assessment methods for gynecological examination training
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso embargado |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal da Paraíba
Brasil Ciências Exatas e da Saúde Programa de Pós-Graduação em Modelos de Decisão e Saúde UFPB |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpb.br/jspui/handle/123456789/19381 |
Resumo: | The Gynecological Exam is important for women’s health because, in addition to allowing the treatment of HPV and Herpes, it helps identifying cervical cancer in its early stages. It is well known that the more a given task is performed, the more expertise will be achieved. For some areas, particularly in medicine, the lack of practice in certain procedures can have consequences ranging from simple complications to the patient’s death. A solution proposed two decades ago is the use of virtual reality (VR) simulators for the training of certain medical procedures. This work presents a VR simulator for the Gynecological Exam with a new approach for assessing the performance of health students. The assessment system is a fusion of various Fuzzy Naive Bayes assessment methods, using Computational Granularity as their combiner. The results show that this assessment system fulfills the proposed objective and presents better results than the individual methods on their own. |