Fusion of online assessment methods for gynecological examination training

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Soares, Elaine Anita de Melo Gomes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso embargado
Idioma: eng
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Ciências Exatas e da Saúde
Programa de Pós-Graduação em Modelos de Decisão e Saúde
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/123456789/19381
Resumo: The Gynecological Exam is important for women’s health because, in addition to allowing the treatment of HPV and Herpes, it helps identifying cervical cancer in its early stages. It is well known that the more a given task is performed, the more expertise will be achieved. For some areas, particularly in medicine, the lack of practice in certain procedures can have consequences ranging from simple complications to the patient’s death. A solution proposed two decades ago is the use of virtual reality (VR) simulators for the training of certain medical procedures. This work presents a VR simulator for the Gynecological Exam with a new approach for assessing the performance of health students. The assessment system is a fusion of various Fuzzy Naive Bayes assessment methods, using Computational Granularity as their combiner. The results show that this assessment system fulfills the proposed objective and presents better results than the individual methods on their own.