Estudo cinético do processo de digestão anaeróbia de resíduos sólidos vegetais
Ano de defesa: | 2009 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal da Paraíba
BR Química Programa de Pós-Graduação em Química UFPB |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpb.br/jspui/handle/tede/7187 |
Resumo: | The waste from fruit and vegetables and the discharge of domestic and industrial wastewaters in an unacceptable way cause serious problems for the majority of cities in Brazil and the rest of the world. The residues from fruit and vegetables and domestic and industrial wastewater could be treated jointly by the process of anaerobic digestion resulting in the production of energy and a reduction in negative environmental impacts. The principal objective of this work was to study the kinetics of the process of anaerobic biostabilization of vegetable residual solids (RSV), treated at different concentrations of total solids with the view to optimizing energy production and anaerobic biostabilization. To execute this study a completely mixed, compartmentalized anaerobic reactor comprising three compartments separated by glass plates with unit volumes of 25 litres, was designed, installed and monitored,. The resulting products from anaerobic biostabiliztion in the form of semi-solids were monitored weekly except for pH, total alkalinity and volatile fatty acids which jointly with biogas production were monitored twice weekly during a the total monitoring period of 294 days. The work was divided into two stages. In the first stage a substrate comprising twelve different types of vegetable solid waste with a total solids concentration equal to 75, 4 g/L was used. In the second stage the concentration of total solids applied to compartments C1, C2 and C3 were 40, 22.6 and 23.2 g/L respectively, with the with the level of humidity being adjusted by the addition of domestic sewage. The maximum percentage of methane in the biogas was 61.5% obtained in the first compartment (C1) of the reactor during the second experimental stage. The maximum kinetic constants for bioconversion (k) for COD total and soluble, TKN and sulphate during the first stage were respectively 3.86 x 10-2, 3.01 x 10-2, 4.75 x 10-2 and 2.13 x 10-2d-1. During the second stage of the study the values maximum obtained were 1.28 x 10-2, 1.90 x 10-2, 2.90 x 10-2 and 3.22 x 10-2d-1, for COD total and soluble, TKN and sulphate respectively. |