Montagem e caracterização de células solares fotovoltaicas de TiO2.
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal da Paraíba
Brasil Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica UFPB |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpb.br/jspui/handle/tede/8453 |
Resumo: | Due to increasing demand in the global energy sector, research are being grounded in the pursuit of new nonpolluting energy resources. With concepts of use already well-established, solar energy has been highlighted in its capture and transformation into electricity. One way of using solar energy with great impact on energy network is the transformation through the solar cells, which are devices for direct conversion of solar energy into electricity through the photovoltaic effect. This raises a number of challenges to their development as it relates to new materials that allow greater efficiency in this transformation. Photovoltaic cells need to be efficient, stable, and its manufacturing cost must be competitive. Considering these factors, this paper presents the assembly of solar cells sensitized by titanium dioxide pigment (TiO2) most commonly found in the literature. Based on this, the solar cell has been developed using the Pechini method. The methodology is consolidated and objective, an optimization of all steps involved in the assembly process of the cells to improve the efficiency of energy conversion. To check the performance of the cell, its efficiency is calculated. This estimate requires a fill factor (FF) extracted from the I-V curve. For this purpose, Newton Rapson and Levenberg-Marquardt algorithms are used to plot the curve and find the cell parameters. The experimental results show that the cell built with an area of 6,25 square centimeters and the efficiency value η = 3.21% is effective in the transformation of solar energy into electricity. |