Uso da técnica de solution blow spinning para produção de scaffolds tridimensionais de fibras híbridas e bioativas contendo íons terapêuticos para potencial regeneração óssea

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Nascimento, Tatiana Rita de Lima
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso embargado
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Engenharia de Materiais
Programa de Pós Graduação em Ciências e Engenharia de Materiais
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/123456789/19296
Resumo: Three-dimensional fibrous structures are used as scaffolds for the release of ions and regeneration of bone tissue. A suitable method for the synthesis of organic-inorganic hybrid nano- / microfibers with the incorporation of calcium methoxyethoxide for potential bone regeneration using the cryogenic and coaxial Solution Blow Spinning (core-shell) techniques combinate was demonstrated for the first time. The silica network precursor inorganic sol-gel was mixed to polymer matrices (poly (D, L, L-lactic) (PDLLA) and gelatin) to obtain hybrid class I hybrid class II. Hybrid spinning was performed by coaxial cryogenic SBS and the obtained scaffolds were analyzed for: morphology (SEM), chemical structure (FTIR, XRD), thermal (DSC, TGA), mechanical (uniaxial), deconvolution of chemical drifts of silicates (solid state NMR). The in vitro study was performed using immersed simulated body fluid (FBS) samples for 1-336h of immersion time by solution exchange. The specimens in triplicate of each immersion time were analyzed by SEM and the solutions by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AGES). The three-dimensional bioactive hybrid class I (PDLLA-Silica) and II (Gelatin-Silica) scaffolds showed predominantly amorphous, smooth and nanoporous surface morphology, with average diameters: fibers from 0.7 to 2.8 μm and pores of 150 nm. The bioactive hybrid scaffolds were successfully obtained and presented thermal stability and low modulus of elasticity showing brittle mechanical behavior when the calcium alkoxide was inserted. The hydroxyapatite was formed in the porous and rough fibers for class I and class II hybrids. Thus, bioactive hybrid scaffolds are potential osteostimulators for regeneration as well as for topical use when there is a need for cellular bioactivity by calcium ions.