Uso de algoritmo genético no ajuste linear através de dados experimentais
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal da Paraíba
Brasil Matemática Programa de Pós-Graduação em Matemática UFPB |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpb.br/jspui/handle/tede/8028 |
Resumo: | In this paper we discuss the problem of linear tting to experimental data using a method bio-inspired of optimization, i.e., it imitates the biological concepts attempt to nd optimal or suboptimal results. The method used is the genetic algorithm (GA), AG makes use of the theory of Darwinian evolution to nd the best route for the desired maximum point. Traditionally, the linear tting is made through the method of least squares. The method is e cient, but is di cult to justify the pre-calculus classes. Therefore, the alternative AG comes as a computationally exhaustive procedure, however easy justi cation for these classes. Thus, the purpose of this study is to compare the results of linear tting for some control scenarios using this methods and certify the quality of the adjustments obtained by the approximate method. At the end of the work it was found that the results are solid enough to justify the alternative method and the proposed use of this optimization process has the potential to spark interest in other areas of mathematics. |