Análise metabolômica das folhas de Cissampelos Sympodialis Eichler e a relação com a atividade relaxante em traqueia de cobaia

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Melo, Ingrid Christie Alexandrino Ribeiro de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Farmacologia
Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/tede/8635
Resumo: Cissampelos sympodialis Eichl., (Menispermaceae) is popularly known as “milona". This species has shown potential to interfere with the pathophysiology of asthma by exerting multiple synergistic effects. Warifteine, a bisbenzilsioquinoline alkaloid has been considered as the main bioactive substance present in the leaves and roots of this species. The present work used a metabolomics approach combined with multivariate data analysis to study quantitative and qualitative chemical variations in the leaf extracts during the phenological development of the plant (between 60 and 210 days after seedling, and the corresponding extracts were coded as CsL60, CsL90, CsL120, CsL150, CsL180 e CsL210) and its relation with the relaxing effect using in vitro guinea pig tracheal. 1H-NMR data from extracts were submitted to PCA analysis and the concentration of the identified compounds was quantified by 1H qNMR. The contents of warifteine and methylwarifteine were determined by HPLC and the total phenolic content of extracts was determined using the Folin-Ciocalteu method, using galic acid as standard. Extracts submitted to 1H-NMR spectroscopy were simultaneously screened to determine their potency in relaxing in vitro guinea-pig tracheal pre-contracted with carbachol. To investigate the relationship between chemical profile and pharmacological activity we used PLS regression. The method was able to identify and to quantitate 20 primary and secondary metabolites in the extracts. The concentration of the major alkaloids decrease from 2.0 ± 0.32 μg/mL for warifteine and 1.0 ± 0.14 μg/mL for methylwarifteine to undetectable levels from 90 days onwards after seedling for warifteine and 120 days for methylwarifteine. Phenolic compounds and derivatives of the flavonols quercetin and kaempferol behave in na opposite fashion, increasing its levels towards fructification (from 0.1 ± 0.05 to 1.0 ± 0.12 mmol/L for quercetin and from 0.4 ± 0.12 to 1.0 ± 0.16 mmol/L for kaempferol). The metabolomics study based on 1H-NMR spectroscopy with PCA was able to discriminate all extracts demonstrating that the phenological cycle is associated with clear differences in chemical composition, mainly due to variations in the concentration of sugars and quinic acid derivatives. The extract obtained during fructification (CsL210) was the most distinctive amongst all samples mainly due to signals from quinic acid derivatives, kaempferol and quercein derivatives. The content of major alkaloids decreased from 2.0 ± 0.32 μg/mL for warifteine and 1.0 ± 0.14 μg/mL to methylwarifteine to undetectable levels from 90 days onwards after seedling for warifteine and 120 days for methylwarifteine. The phenolic compounds and flavonoids quercetin (0.1 ± 0.05 a 1.0 ± 0.12 mmol/L) and kaempferol (0.4 ± 0.12 a 1.0 ± 0.16 mmol/L) behaved in an opposite fashion, increasing its concentration towards fructification. The six extracts relaxed the trachea pre-contracted with carbachol guinea pig, and the CsF210 extract (EC50 = 74.6 ± 7.9 μg/mL) more potent compared to CsL90 extracts (EC50 = 231.6 ± 38.9 μg/ml) and CsL180 (EC50 = 239.7 ± 15.1 μg/ml) in the presence of functional epithelium. There was no correlation between the content of alkaloids as determined by HPLC and the spasmolytic activity of the extracts. PLS analysis revealed a moderate correlation between 1H-NMR signals for quercetin and kaempferol derivatives and the spasmolytic activity of extracts. Taken together our results demonstrate for the first time that bisbenzylisoquinoline alkaloids warifteine and methylwarifteine do not seem to participate in the spasmolytic actions of polar Cissampelos sympodialis extracts.