Detecção e correção de outliers em curvas de demanda de energia utilizando redes neurais artificiais autoencoders

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Pimentel, Levi da Costa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Engenharia Elétrica
Programa de Pós-Graduação em Engenharia Elétrica
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/123456789/27059
Resumo: One of the main problems encountered in Smart Grids is the occurrence of outliers, which can corrupt data, thus modifying the information brought by them, making it difficult for electrical system operators to make decisions based on this information. Therefore, this work proposes an integrated outlier detection and correction methodology, based on artificial neural networks. More specifically, a detection system based on Autoencoders was developed, with the aid of a softmax layer, and a correction system based on Autoencoders. The proposed methodology was contemplated in several scenarios, using data from a real substation, where the influence of the variation in the number of outliers present in the database, as well as the variation of their amplitude, on the functioning of the algorithms, is evaluated. In the tests performed, the detection technique achieved Accuracy and F-scores greater than 99.7% and 97.4%, respectively. The correction technique obtained MAPE mean absolute percentage error of 1.42%, while the root mean square error remained, in most of the evaluated scenarios, below 0.15 MW, a value that represents about 1.7% of the maximum power value available in the database.