Desenvolvimento de um sistema inteligente de monitoramento prescritivo para severidade das condições de funcionamento de um redutor do tipo coroa sem-fim

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Oliveira Neto, João Manoel de lattes
Orientador(a): Rodrigues, Marcelo Cavalcanti lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Mecânica
Departamento: Engenharia Mecânica
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/123456789/30202
Resumo: As máquinas industriais, de uma forma geral, se caracterizam pelo funcionamento proveniente de um motor elétrico associado a um sistema de redução de velocidade ou transmissão de força do tipo mecânico, como por exemplo através de engrenagens. Vários outros elementos compõem o sistema de funcionamento de uma máquina, e devido a carga cíclica imposta e as más condições de uso a que são impostos esse conjunto, se faz um acompanhamento preventivo ou são adotadas técnicas de manutenção preditiva de modo a prever o surgimento de falhas. Essa pesquisa tem por objetivo desenvolver um sistema inteligente, por meio da coleta de dados via análise de sinais sonoros, para realizar o diagnóstico prescritivo sobre a severidade relacionada a más condições de funcionamento em um sistema rotativo, cujo sistema de transmissão se dá por engrenagens do tipo coroa sem-fim, onde a severidade de funcionamento foi classificada em “leve”, “média” e “grave”. Os sinais sonoros foram coletados com um microfone e em simultaneidade realizou-se a análise de vibração de modo a validar os resultados obtidos. A extração das características dos sinais se deu por análise multi resolução wavelet, utilizando as informações contidas no coeficiente de detalhe 4, assim como ferramentas estatísticas, sendo essas desvio-padrão, variância e coeficiente de curtose. Identificados os padrões de funcionamento, elaborou-se a arquitetura de uma rede neural artificial multicamadas do tipo perceptron, com algoritmo backpropagation para classificação desses sinais. Como resultado obteve-se uma RNA com eficiência geral de 99,7%. Concluiu-se, que o desenvolvimento do sistema inteligente prescritivo foi capaz de detectar a severidade decorrente de más condições de funcionamento inseridas no protótipo em laboratório e em um equipamento industrial, podendo servir como ferramenta auxiliar em rotinas de manutenção.