Redes neurais de múltiplas camadas para redução do tempo de aquisição de dados para testes modais em estruturas flexíveis

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: MACHADO, José Aristides dos Santos lattes
Orientador(a): VIEIRA JÚNIOR, Petrônio lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pará
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufpa.br/jspui/handle/2011/7187
Resumo: Neste trabalho discutem-se técnicas de aperfeiçoamento das estimativas dos parâmetros dinâmicos de modelos representativos de Sistemas de Um Grau de Liberdade (S1GL) e Sistema de Múltiplos Graus de Liberdade (SMGL) de estruturas flexíveis. As avaliações referem-se aos métodos que utilizam a Função Resposta em Freqüência (FRF) obtida mediante medições da resposta ao impulso de uma estrutura flexível. Utiliza-se como hipótese de trabalho o pressuposto de que o modelo subjacente possui adequação para uma descrição precisa do sistema. Portanto, um bom método de obtenção experimental da FRF deve levar a uma concordância significativa entre a FRF prevista pela teoria e a FRF obtida experimentalmente. No presente trabalho investiga-se o ganho em qualidade obtido com o aumento virtual do tempo de aquisição (previsão de valores futuros). Na realização desta estratégia faz-se uso de Previsores Não Lineares baseados em Redes Neurais de Múltiplas Camadas (RNMC). Para comparação de desempenho do Previsor Neural, utilizam-se Previsores Lineares (modelos ARX e ARMAX). Os resultados obtidos neste estudo sugerem a viabilidade do uso de redes RNMC para melhoria da estimativa de parâmetros de estruturas flexíveis.