Previsão de raios utilizando técnicas de inteligência computacional e dados de sondagem atmosférica por satélite

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: ALVES, Elton Rafael lattes
Orientador(a): COSTA JÚNIOR, Carlos Tavares da lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pará
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufpa.br/jspui/handle/2011/10087
Resumo: As descargas atmosféricas oferecem grande risco à população e às atividades que envolvem diferentes sistemas como telecomunicações, transmissão de energia elétrica, transporte e dentre outros. A previsão de ocorrência de raios pode contribuir para minimizar os riscos deste fenômeno natural. Com isso, esta tese apresenta uma proposta de modelo de previsão de raios baseada na utilização de dados de sondagens atmosféricas por satélite, validado com dados históricos de raios para áreas de estudo da região Amazônica no Brasil, mediante um estudo que considerou cinco casos de período de validade de previsão de raios: caso 1 (uma hora), caso 2 (duas horas), caso 3 (três horas), caso 4 (quatro horas) e caso 5 (cinco horas). Foram utilizadas duas metodologias diferentes de previsão: a primeira versão do previsor utilizou os dados de todas as áreas do estudo na formação aleatória dos conjuntos de treinamento, validação e teste. Em uma segunda versão, não se utilizou o critério de aleatoriedade dos dados na formação dos conjuntos de treinamento e teste, e os mesmos foram limitados para cada área do estudo, de forma a criar previsões individualizadas por área geográfica estudada. A ferramenta de engenharia utilizada para previsão foi uma Rede Neural Artificial (RNA) treinada com o algoritmo Levenberg-Marquardt backpropagation com a finalidade de classificar as modelagens preditivas de raios. A classificação consistiu na possibilidade de prever a ocorrência ou ausência de raios a partir do perfil vertical de temperatura do ar (temperatura do ar e temperatura do ponto de orvalho) obtido pelo satélite NOAA-19. Os resultados obtidos pela RNA, na primeira abordagem, foram comparados com metodologias tradicionais estabelecidas na literatura de previsão de raios, na segunda abordagem os resultados obtidos mostraram a saída do previsor para dados reais de teste. Os resultados de ambas abordagens mostraram que a RNA foi capaz de identificar adequadamente a que classe pertence um novo exemplo em relação às categorias de ocorrência ou ausência de raios. Para a primeira abordagem, obteve-se o melhor desempenho para caso 5, com uma acurácia de teste de 95,6%, enquanto que para a segunda abordagem obteve-se uma acurácia geral de teste de 82,04%.