Ciência de dados e aprendizado de máquina aplicados ao estudo de variáveis epidemiológica hanseníase na Amazônia

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: FALCÃO, Igor Wenner Silva lattes
Orientador(a): SERUFFO, Marcos César da Rocha lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pará
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufpa.br/jspui/handle/2011/16790
Resumo: A hanseníase é um problema de saúde pública significativo que afeta, em grande parte, populações de baixo nível sócioeconômico. Embora a Organização Mundial da Saúde (OMS) estabeleça diretrizes para diagnóstico, prevenção e tratamento, a detecção da doença enfrenta limitacões, frequentemente resultando em diagnósticos tardios ou imprecisos e levando a complicações neurológicas graves e casos multirresistentes. Portanto, o diagnóstico precoce é essencial para reduzir a carga dessa doença. O aprendizado de máquina vem sendo largamente utilizado em diversas áreas da ciência e da indústria, mas especialmente na saúde, área em que desempenha um papel essencial na análise e tratamento de grandes volumes de dados. Neste sentido, esta tese investiga a aplicação de um modelo baseado em Ciência de Dados e Aprendizado de Máquina para atuar na especificação do perfil clínico de possíveis casos da hanseníase na Região Amazônica e, com isso, poder-se agir preventivamente no diagnóstico precoce e tratamento de pacientes em acompanhamento médico. O trabalho leva em consideracão dados clínicos de pacientes provenientes de um conjunto de dados não públicos, coletados entre 2015 e 2020 na região Norte do Brasil. Logo, esta tese propõe um modelo de aprendizado para identificar grupos clinicamente afetados pela doença usando técnicas de Agrupamento e Random Forest. Nos resultados obtidos, o modelo proposto demonstrou eficiência ao avaliar a probabilidade de indivíduos estarem doentes, alcançando uma precisão de 90,39% na avaliação de performance e identificando uma probabilidade de 83,46% de um indivíduo estar doente, considerando um conjunto de variáveis epidemiológicas e não genéricas. Essa abordagem oferece uma visão promissora para o futuro da saúde, permitindo a formulação de estratégias eficazes para a identificação precoce de possíveis casos.