Caracterização de padrões de descargas parciais em hidrogeradores utilizando técnicas de inteligência computacional

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: ALVES, Medillin Pereira lattes
Orientador(a): NUNES, Marcus Vinícius Alves lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pará
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufpa.br/jspui/handle/2011/8038
Resumo: Esta dissertação apresenta os experimentos com aplicações de técnicas de Inteligência computacional para caracterização de descargas parciais em hidrogeradores. A classificação das descargas parciais contribui para uma análise prévia de problemas e permite a manutenção preditiva nas máquinas, reduzindo a possibilidade de falhas nas mesmas. Os dados foram coletados de modo online (máquina em operação) na Usina Hidrelétrica de Tucuruí, sendo observados os padrões de descarga interna, de laminação e entre barras. O software IMA-DP, desenvolvido em parceria entre Eletronorte e Cepel, permitiu que esses dados fossem medidos e registrados de maneira rápida, e organizados através dos mapas PRPD (Phase Resolved Partial Discharges). As técnicas de binarização, ANOVA (Analisys of Variance), ACI (Análise de Componentes Independentes) e ACP (Análise de Componentes Principais) foram aplicadas aos sinais para adequar os mesmos ao uso das técnicas de inteligência computacional. O trabalho foi desenvolvido no ambiente IPython usando a biblioteca scikit-learn, a qual possui eficientes algoritmos de inteligência. Os experimentos foram realizados fazendo-se uso das técnicas: KNN (K-Nearest Neighbors.), Floresta Randômica e MVS (Máquinas de Vetores de Suporte). Tais técnicas apresentaram bons resultados com os experimentos realizados, destacando-se aqueles obtidos para MVS que apresentaram os melhores resultados, atingindo uma acurácia de 96.07%, devido possuir mecanismos de seleção das principais variáveis durante o processo de treinamento.