Comparação entre regressão linear, redes neurais artificiais e árvores de regressão para quantificação do impacto harmônico de múltiplas cargas em redes elétricas de distribuição.

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: PAIXÃO JÚNIOR, Ulisses Carvalho lattes
Orientador(a): TOSTES, Maria Emília de Lima lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pará
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufpa.br/jspui/handle/2011/10457
Resumo: Nos últimos anos, o desenvolvimento socioeconômico da população, o crescimento dos setores comercial e industrial, assim como a instalação cada vez mais crescente de novas cargas, têm gerado grande evolução na demanda do consumo de energia elétrica. Por sua vez, buscando obter sistemas mais eficientes, os fabricantes têm produzido equipamentos energeticamente mais eficientes para utilização residencial, comercial e industrial. No entanto, essas cargas, devido à sua não linearidade, têm contribuído significativamente para o aumento dos níveis de distorção harmônica de tensão e corrente, elevando a preocupação dos gestores do setor elétrico quanto a qualidade de energia elétrica (QEE), principalmente, pela dificuldade na identificação da origem da distorção harmônica. Logo, visando antecipar os efeitos harmônicos e atender a regulamentação vigente, por meio de técnicas computacionais, no presente trabalho dá-se ênfase no ponto de acoplamento comum (PAC), independente das características de consumo e cargas, com o intuito de avaliar os impactos harmônicos em sua rede, além de comparar o nível de confiabilidade das técnicas por meio do erro absoluto médio (EAM). A metodologia proposta utiliza o software de Sistema de Qualidade de Energia Elétrica (SISQEE) que possibilita a utilização de três técnicas computacionais distintas, sendo Regressão Linear, Redes Neurais Artificiais e Árvores de Regressão, para avaliar a contribuição harmônica de cada alimentador no ponto de interesse das redes elétricas escolhidas. Para comprovar a validade da metodologia, são elaborados dois estudos de caso baseadas em medições reais em uma universidade e em um polo industrial. As medições foram realizadas com o período mínimo amostral de sete dias através de analisadores de QEE, conforme procedimentos de distribuição da ANEEL (PRODIST). Como resultado da QEE, verificou-se o quanto cada alimentador impacta a distorção de tensão e corrente no PAC, além de classificar os alimentadores com relação a seu respectivo impacto na rede elétrica estudada. Também como resultado, os estudos propiciaram a avaliação de desempenho entre as diferentes técnicas, com diferentes intervalos de tempo (semanal, diário e por patamar de carga), permitindo classificar o comportamento e a confiabilidade de cada técnica em cada período. Como conclusão do trabalho, os métodos propostos e as análises apresentadas dão subsídios aos gestores para efetuar uma ação mitigadora mais eficiente dos impactos harmônicos causados na rede elétrica e, também, identificar as diferenças entre as técnicas e seu grau de confiabilidade, de acordo com os intervalos temporais estudados.