Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
CARVALHO JUNIOR, Claudomir Cardoso de
 |
Orientador(a): |
KLAUTAU JÚNIOR, Aldebaro Barreto da Rocha
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Pará
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica
|
Departamento: |
Instituto de Tecnologia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.ufpa.br/jspui/handle/2011/7751
|
Resumo: |
A principal finalidade dos algoritmos para classificação automáica de modulacão em um receptor inteligente para rádio cognitivo ou aplicacões militares é a identificacão da modulacão de um sinal para que o receptor possa, posteriormente, realizar o processo de de modulacão e em seguida o processamento da informacão recebida. A falta de conhecimento acerca de parâmetros como, por exemplo: potência do sinal, frequência e fase da portadora, sincronismo temporal e outros; somados aos efeitos dos canais como desvanecimento de multipercurso, tornam o problema de classificação automática de modulacão desafiador e bastante investigado atualmente. Neste contexto, esta Tese apresenta uma investigação sobre algoritmos de classificação automática de modulacão baseados na aprendizagem discriminativa e avalia o desempenho dos mesmos em distintos cenários de uso. A Tese apresenta uma nova proposta de classificação baseada no extrator de parâmetro (front end) chamado de HISTO. A classificação é realizada sobre os síımbolos recebidos, onde os histogramas de magnitude e fase são calculados. Os resultados obtidos usam o extrator de parâmetro proposto e o algo- ritmo Máquina de Vetores de Suporte (MVS), os quais são comparados com outras técnicas. Na literatura, alguns dos algoritmos propostos são avaliados assumindo-se o conhecimento de parâmetros da modulacão e em cenários distintos, dificultando a comparação entre os algoritmos. Nesta Tese, algoritmos representativos do estado da arte são comparados com os propostos de maneira sistemática e uniforme, incluindo-se cenários não-ideais como os com phase jitter e offset de frequência. Os resultados das simulações mostram que proposta de classificação baseada em histogramas é eficiente com relativo baixo custo computacional. |