Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
LOPES, Frederico Henrique do Rosário
 |
Orientador(a): |
OLIVEIRA, Rodrigo Melo e Silva de
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Pará
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica
|
Departamento: |
Instituto de Tecnologia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufpa.br/jspui/handle/2011/16750
|
Resumo: |
Hidrogeradores são ativos cruciais tanto para empresas geradoras de energia quanto para a população que depende desse abastecimento. No entanto, essas máquinas estão suscetíveis a vários tipos de defeitos que podem resultar em interrupções inesperadas, se nada for feito a respeito. A análise de descargas parciais é uma abordagem já consolidada para avaliar a condição de equipamentos de alta tensão, sendo essencial a detecção automática de diferentes tipos de defeitos, uma vez que diferentes níveis de risco à operação variam de acordo com o tipo de descarga. Redes neurais profundas têm sido propostas visando à classificação de descargas parciais usando diagramas PRPD (phase-resolved partial discharge). Contudo, a obtenção de conjuntos de dados rotulados com grande número de exemplos é um problema que impacta diretamente no desempenho de classificadores treinados de maneira supervisionada. Neste contexto, nesta dissertação propõe-se uma técnica semiautomática para a rotulagem de PRPDs, baseada em estratégias de redução de dimensionalidade e agrupamento de dados, bem como investiga-se o uso de GAN (generative adversarial network) na ampliação artificial do conjunto de treinamento. O conjunto de dados usado no trabalho é composto por PRPDs reais obtidos por meio de procedimentos de monitoramento online de descargas parciais em hidrogeradores. O desempenho dos sistemas propostos é contrastado com resultados recentes representativos do estado da arte na área. Os resultados demonstram que a aplicação da técnica proposta para rotulagem semiautomática tem potencial para reduzir consideravelmente a carga de trabalho e o tempo associados à classificação manual. Além disso, o uso de PRPDs artificiais gerados pela GAN resultou notável melhoria no desempenho do classificador que alcançou 94,72% de acurácia média, em comparação com 89,44% obtido com a melhor técnica concorrente. Foram observados ganhos semelhantes também nas acurácias por classe. |