Detalhes bibliográficos
Ano de defesa: |
2000 |
Autor(a) principal: |
VAZ, Cristina Lúcia Dias
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
BOLDRINI, José Luiz
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual de Campinas
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Matemática Aplicada – PPGMA/UNICAMP
|
Departamento: |
Campus Universitário de Abaetetuba
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.ufpa.br/jspui/handle/2011/9821
|
Resumo: |
Neste trabalho apresentaremos resultados de existência e regularidade das soluções de alguns modelos matemáticos relativamente simples (primeiras aproximações) de condução-convecção do tipo campo de fases que tratam problemas de solidificação de materiais puros ou impuros (ligas). A característica fundamental dos modelos tratados neste trabalho é que o indicador das fases, a fração sólida, dependerá apenas do campo de fases. Para o caso de ligas binárias obtivemos a existência de soluções apenas quando a concentração inicial do soluto é suficientemente pequena (isto é, para materiais dopantes). Estes modelos são governados pela equação do campo de fases, pela equação do calor e/ou a equação da concentração, acopladas com as equações de Navier-Stokes modificadas por um termo fonte que simula a zona mushy (interface líquido/sóli.so) como um meio poroso. Para tratarmos tal sistema, procedemos da seguinte forma: primeiramente o sistema é adequadamente regularizado e uma sequência de soluções aproximadas é obtida aplicando-se o Teorema de ponto fixo de Leray-Schauder. Depois, por um processo de passagem ao limite nas equações regularizadas, obtemos uma solução usando argumentos de compacidade. A seguir, por argumentos de bootstraping, prova-se que a solução é de fato mais regular do que inicialmente considerada. |