Nanofabricação, caracterização e modelagem de dispositivos optoeletrônicos nanoestruturados de corantes orgânicos

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: COSTA, Sheila Cristina dos Santos lattes
Orientador(a): DEL NERO, Jordan lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pará
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufpa.br/jspui/handle/2011/9244
Resumo: Para melhor entendermos o processo de miniaturização e o comportamento de estruturas moleculares sob este efeito, recorremos aos cálculos baseado em Mecânica Quântica (MQ) com a finalidade de corroborar dados teóricos e experimentais como propriedades de estrutura eletrônica bem como propriedades elétricas. Outro método bastante conhecido e utilizado consiste em simular o efeito soluto-solvente através do método probabilístico Monte Carlo (MC). De posse de ferramentas computacionais voltadas para estas metodologias, desenvolvemos simulações MQ/MC que traduzem o comportamento dos compostos orgânicos Vermelho de Metíla (VM) e 1,4-bis (5-phenyl-2-oxazolyl) benzene (POPOP), quando sofrem mudanças estruturais bem como modificações em suas propriedades ópticas; devido aos processos de miniaturização, variações de ambiente, ações externas, etc. O composto Vermelho de Metila é conhecido como um corante sensível a variação de pH e encontra-se nas formas básico e ácido (isoeletrônico, zwitteriônico) é classificado como um azocomposto pela presença de uma ligação (-N = N-) em sua estrutura. O POPOP é um corante luminescente de intensa fluorescência na região azul do espectro UV-Visível; ressaltamos que para investigarmos os princípios funcionais deste composto propomos estruturas conformacionais derivadas protonadas POPOP [C1(NP+P) e C2(NP+P)]. Inicialmente todas as estruturas dos compostos orgânicos de VM e POPOP foram otimizadas através dos métodos quânticos: semiempíricos PM3 (Parametric Method 3) e ab initio, HF (Hartree-Fock) e DFT (Density Functional Theory), obtendo-se os parâmetros geométricos e as conformações de menor energia de cada sistema, para o estudo da estrutura eletrônica. Seqüencialmente, duas etapas distintas de simulação foram empregadas para o estudo dos compostos: 1ª) as estruturas de VM e POPOP foram otimizadas através do método PM3 com adicional Campo Elétrico Externo (CEE), obtendo-se os parâmetros geométricos e parâmetros de carga. Utilizamos este método com a finalidade de simular as propriedades de transporte eletrônico nos compostos orgânicos, como a resposta elétrica caracterizada pela curva do transporte de carga (e-) em função da variação da intensidade de tensão (V) nas estruturas. Mediante a resposta elétrica [(e-) × V] caracterizamos esta função empregá-los em dispositivos nanoestruturados, como diodos, fotodiodos, células solares, etc. A 2ª etapa consiste em simular os compostos orgânicos através do método Monte Carlo, para investigarmos os seus comportamentos em líquido. Os sistemas distintamente consistem na adição de VM (básico, ácido: isoeletrônico e zwitteriônico) e POPOP [C1(NP+P) e C2(NP+P)] em 1000 moléculas de água para analisar a interação soluto-solvente para desenvolvimento de sistemas interagentes optoeletrônicos como sensores de gás. Na simulação MC foi realizado 1× 1010 passos MC para ambos os estágios de termalização e equilíbrio, no ensemble NVT. Gerando um conjunto de 105 configurações, a partir destas selecionamos um conjunto reduzido de 103 configurações descorrelacionadas das quais obtemos a média de convergência das transições eletrônicas π→π*. A média de convergência das transições eletrônicas π→π* para VM: básico 434.33 nm ± 1.0 [436.34 ± 2.0 nm], isoeletrônico 485.80 nm ± 2.0 nm [480.66 nm ± 3.0 nm], e zwitteriônico [502.13 nm ± 3.0 nm]; para POPOP C1 [361.25 nm ± 2.0 nm], C1(NP+P) [485.0 ± 26.0 nm], C2 [355.39 nm ± 3.0 nm] e C2(NP+P) [472.0 ± 24.0 nm]. As médias das transições eletrônicas π→π* foram obtidas através do método semiempírico ZINDO/S-CIS (Zerner Intermediate Neglect of Diffential Orbital/ Spectroscopic – Configurations Interaction, Single excitation) que melhor traduz os parâmetros espectroscópicos de moléculas orgânicas na região do UV-visível. Experimentalmente desenvolvemos dois tipos distintos de sistemas através das técnicas: Sol-Gel que consiste na incorporação dos compostos em matrizes hospedeiras de APP (Aluminum Polyphosphate), e Blendas que consiste na fabricação de dispositivos de volume com monocamada ativa. Os compostos VM e POPOP foram diluídos em solução híbrida (10% etanol + 90% água), alíquotas destas soluções foram incorporadas na síntese do gel APP. As amostras obtidas pelo processo Sol-Gel foram submetidas à variação pH e caracterizadas por espectroscopia de absorção na região UV-Visível cujas bandas de máxima absorção são de [431 nm, 513 nm, 511 nm] para VM e [358 nm, 511 nm e 472 nm] para POPOP e valores de [355 nm, 361 nm] para POPOP em solução, que corroboram os resultados teóricos a partir das médias das transições eletrônicas π→π*. Os dispositivos de monocamadas de VM e POPOP foram fabricados por filmes finos sobrepostos em substrato vítreo/FTO (1º eletrodo) /PEDOT/P3HT/camada ativa - Alumínio (2º eletrodo) e caracterizados eletricamente por densidade de carga em função da tensão aplicada (J×V), sob corrente de escuro e luz monocromática de 550 nm. Os dispositivos de VM apresentam curva (J×V) característica de um retificador de junção p-n de maior sinal de corrente elétrica sob polarização reversa para corrente de escuro, sendo este sinal intensificado sob luz 550 nm; sob polarização direta o dispositivo apresenta o mesmo comportamento quanto ao sinal de corrente, este é intensificado quando medido sobre luz monocromática (550 nm) em comparação a corrente de escuro, porém sob polarização reversa e polarização direta o dispositivo apresenta curva característica J×V análogo a fotodetector e diodo túnel convencionais. Para POPOP observa-se intensificação do sinal de corrente elétrica sob polarização direta e reversa quando os dispositivos estão expostos sob luz monocromática em comparação com medidas feitas sob corrente de escuro, de modo que a curva característica (J×V) tem comportamento de similar a fotodiodos convencionais. Os resultados teórico-experimentais das propriedades elétricas (J×V) dos compostos apresentaram comportamentos similares na faixa de voltagem de aproximadamente [– 2.0 V – 2.97 V] para VM e [-2.86 V – 2.86V] para POPOP. Desenvolvemos um estudo completar com polímeros de baixo bandgap (gap 1 eV) baseados em pontes de monômeros compostos por carbono, formando cadeias poliméricas foram investigados pelos métodos AM1 (Austin Model 1), PM3 e DFT [B3LYP/6-31G] e corroborados aos resultados dos oligômeros de CDM (4-dicyano methyllene-4H-cyclopenta [2,1- 3: 4-b’] dithiophene) e BDT (1,3-benzodithiole-4H-cyclopenta [2,1-b:3,4-b’] dithiophene), derivados do di-tiofeno. Os resultados mostram que o crescimento da cadeia polimérica formada pelos monômeros de CDM e BDT provoca a redução do bandgap dos oligômeros, comportamento análogo aos polímeros baseados em (3-alkylthiophenes) cuja energia da transição eletrônica π→π* é de 1.67 eV, a máxima absorção do CDM e BDT são de 1.28 eV e 1.73 eV, respectivamente. Os métodos teóricos utilizados neste estudo descrevem satisfatoriamente este comportamento, cuja máxima absorção é de aproximadamente 1.28 eV para CDM e 1.74 eV para BDT estes resultados foram obtidos a partir das cadeias poliméricas formadas por 5 unidades monoméricas, demonstrando que as conformações geométricas das cadeias poliméricas simuladas são equiprováveis, comprovando a confiabilidade dos métodos utilizados em nossa investigação. Em linhas gerais os resultados apresentados demonstram que os compostos orgânicos investigados são bons candidatos para emprego em dispositivos orgânicos nanoestruturados aplicados na eletrônica molecular e tecnologia de novos materiais.