Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
MOTA, Raimundo José Santos |
Orientador(a): |
CAVALCANTE, Gervásio Protásio dos Santos
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Pará
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica
|
Departamento: |
Instituto de Tecnologia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.ufpa.br:8080/jspui/handle/2011/12294
|
Resumo: |
As Redes Neurais Artficiais (Arti_cial Neural Networks _ ANN) são inspiradas na estrutura e nos aspectos funcionais nas redes neurais biológicas. Elas são treinadas através de mecanismos obtidos das propriedades físicas dos processos envolvidos, por exemplo, ondas eletromagnéticas. Do conhecimento adquirido através dessa experiência e aprendizagem, elas podem ser capazes de fornecer soluções prevendo comportamentos de usuários e fornecendo, dentro de uma região de interesse, dados de estratégias precisas para projetos e dimensionamentos. Aqueles que criticaram a aplicação de algoritmos obtidos das ANN, argumentavam que os problemas a serem encarados eram normalmente sem grandes complexidades. Entretanto, os métodos convencionais que foram propostos para resolverem estes mesmos problemas não se mostraram eficientes. Alguns sucessos espúrios ocorreram em certos ambientes bem comportados, mas sem a exibilidade quando se encontra restrições diversicadas. Em concordância a estes desenvolvimentos, também se teve a abertura evolutiva das ferramentas computacionais, que tem dado um suporte extraordinário para o aprofundamento de técnicas para resolver e otimizar problemas antes impensados. Em muitos problemas de otimização, a qualidade de uma solução é definida por seu desempenho em relação a vários objetivos concomitantes. Tais objetivos, não podem ser sensivelmente reduzido a um único valor, por exemplo, usando uma soma ponderada de todos eles ou outra metodologia pertinente, mas deve se considerar a solução dominadora, independentemente uma do outra. Para atingir soluções precisas com redução de custos computacionais, menor tempo de processamento, se apresentam os Algoritmos Evolucionários Multi-Objetivos (Multiobjective Evolutionary Algorithms _ MOEA), somada com a Computação Bioinspirada (Bioinspired Computation _ BIC). Combinando as vantagens dos algoritmos clássicos, surgiram de forma irreversível os Algoritmos Metaheurísticos. Nesses moldes, é apresentado neste trabalho, uma técnica de otimização híbrida Bioinspirada que associa uma Rede Neural de Regressão Geral (General Regression Neural Networks _ GRNN) em combinação com o Algoritmo Multiobjetivo do Morcego (Multiobjective Bat Algorithm _ MOBA), para projeto e síntese de Superfícies Seletivas de Frequência (Surfaces Selective Frequency _ FSS) objetivando sua aplicação no sistema de comunicação de dados, por difusão de ondas milimétricas, especificamente, no padrão IEEE 802:15:3c. O dispositivo projetado consiste em arranjos planares de metalizações (patches), na forma geométrica de losango, dispostos sobre substratos do dielétrico RO4003. A FSS proposta e de_nida neste estudo apresenta resultados e resposta com característica de banda ultra larga. A FSS patch losango projetada é capaz de cobrir a faixa de 40:0 GHz a 70:0 GHz, ou seja, com largura de banda de 30:0 GHz e frequência de Ressonância em 60:0 GHz. As frequências de corte inferior e superior, para o caso da matriz de espalhamento, referente ao coeficiente de transmissão é dado em decibéis (dB), e foram obtidas no limiar de corte em 10dB para controle da banda de operação do dispositivo. |