Microquímica e mineralogia de processos do minério de cobre de Salobo, Carajás

Detalhes bibliográficos
Ano de defesa: 2002
Autor(a) principal: CHOQUE FERNANDEZ, Oscar Jesus lattes
Orientador(a): COSTA, Marcondes Lima da lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pará
Programa de Pós-Graduação: Programa de Pós-Graduação em Geologia e Geoquímica
Departamento: Instituto de Geociências
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufpa.br/jspui/handle/2011/8172
Resumo: O depósito de cobre do Salobo, localizado na região de Carajás, sudeste do Pará, é reconhecidamente uma das maiores reservas de cobre no país. Apesar de já terem sido desenvolvidos vários estudos mineralógicos sobre este minério, ele ainda desperta muitas controvérsias quanto à origem, dando lugar a diversas interpretações como: "minério de Cu e de óxido de Fe vulcanogênico", "sulfeto maciço vulcanogênico" e "óxidos de ferro (Cu-U-Au-ETR)". Quando comparado com outros exemplos conhecidos mundialmente, ele se apresenta como um exemplo raro de mineralização cupro-aurífera. O minério tem características particulares: mineralização disseminada, granulação fina e rocha mineralizada extremamente dura, que impõem sérias dificuldades à produção de concentrados de cobre. Por essa complexidade o minério é, metalurgicamente, difícil de ser tratado, razão pela qual é constantemente submetido a reavaliações geológicas e tecnológicas. A literatura disponível sobre o depósito de cobre do Salobo é expressiva, porém, trabalhos detalhados sobre microquímica e caracterização tecnológica na cominuição, inexistem ou são de extrema reserva da empresa Salobo Metais S.A. Esses foram os alvos deste trabalho. As análises microquímicas, usando microssonda eletrônica e MEV/SDE, em amostras de testemunhos de furos de sondagem e de pilhas de minério (galeria de pesquisa G3) do Salobo, permitiram identificar que a mineralização sulfetada do depósito de Salobo é constituída por bornita (4 %), calcocita (2 %) e calcopirita (0,5 %), além de proporções variáveis de molibdenita, cobaltita, saflorita, niquelina, siegenita, ouro, prata, grafita, ilmenita, hematita, Te-Ag, uraninita e minerais contendo terras-raras. Estes minerais ocorrem hospedados em dois conjuntos de formações ferríferas, as quais são formadas essencialmente de: a) magnetita e faialita maciça e eventualmente bandadas e, b) biotita e magnetita bandadas. Esses conjuntos (com magnetita 53 % e silicatos 40 %), contêm proporções variá,veis de granada, anfibólio, quartzo, plagioclásio e quantidades subordinadas de fluorita, bem como greenalita, minnesotaíta, stilpnomelana, apatita, monazita, allanita e, ocasionalmente siderita, goethita e malaquita. Pode-se observar uma íntima associação dos sulfetos com os termos rochosos/minérios mais ricos em magnetita. Os sulfetos de cobre ocorrem em cristais < 3,0 mm e grãos finos irregulares disseminados, finas bandas alternadas e/ou foliadas com os silicatos, vênulas e/ou stringers, diminutas inclusões, intercrescimentos mirmequíticos bornita/calcocita e bornita/calcopirita e, substituições bornita-calcocita e bornita-calcopirita. A formação dessas fases resultou de processos complexos e caracterizados por controles composicionais, principalmente pelo enriquecimento em Fe nessas fases. Soluções sólidas de bornita e calcopirita formadas a altas temperaturas deram lugar a esses excessos de ferro. As razões atômicas de Cu/Fe da bornita (4,3-4,9) e calcopirita (média de 0,9) a altas temperaturas permitiram a coexistência em equilíbrio de bornita-calcopirita e, portanto dos intercrescimentos de bomita/calcopirita . Os conteúdos de Fe (máximo 0,96 %) na calcocita podem ter sido incorporados a altas temperaturas, quando a estrutura estava altamente desordenada. Lamelas alongadas de calcopirita seguindo a orientação {111} da bornita, bem como os intercrescimentos bornita/calcocita e bornita/calcopirita sugerem que sejam produtos de exsolução. Se bem que essas fases se encontram associadas com vários minerais em diferentes paragêneses, as feições do minério têm sido drasticamente afetadas pelo metamorfismo, dificultando a reconstrução da sua evolução metamórfica mineral. A moagem produziu mudanças físicas no tamanho de grão do minério do Salobo e, segundo o tempo de residência, curto ou longo, do mineral no moinho, modificou a reologia da polpa. Isso estabeleceu tamanhos de corte a - 270 # (53 µm a 80 % em peso passante, moagem de 4 horas a seco e 2 horas a úmido) que se mostraram adequados à concentração do um minério de cobre. A moagem produziu diferentes frações volumétricas dos sulfetos de cobre nas partículas; assim, para tamanhos de corte < 53 µm as frações foram > 6 % volume, sendo de maior significado entre 26,9 e 7,5 µm (7 a 15 %). A modificação física mostra, ainda, maiores proporções de magnetita que silicatos, com clara incidência da densidade do óxido de ferro na classificação pela ciclonagem. Mineralogicamente, ocorrem os mesmos minerais identificados no ROM, porém com modificações químicas nos sulfetos de cobre. A magnetita é a principal fase dos produtos cominuídos, e a greenalita é de maior ocorrência entre os silicatos, junto com fluorita. As proporções químicas de S, Fe e Cu da bornita, calcocita e calcopirita diferem levemente do run-of-mine (ROM) e das estequiométricas, variando em função do tamanho de grão (maior variação química em tamanhos de grão de 26,9 a 7,5 µm que de 2360 a 37 µm). O ferro pode alcançar até 6,0% em peso na calcocita. As variações químicas em S, Cu e Fe deram lugar à formação dos sulfetos ternários bornita, caracterizada como "misturas complexas" ricas em ferro (Cu4,34-4,76Fe1,03-1,04S4,0) e calcopirita Cu0,93Fe1,08S2,0 rica em ferro (como uma extensão de solução sólida da calcopirita). A partir da oxidação de calcocita, com elevada incorporação de Fe na sua estrutura, formaram-se, também os sulfetos binários djurleíta e digenita Cu1,77-1,84Fe0,04-0,06S1,0. Esses sulfetos de cobre, ternários (Cu-Fe-S) e binários (Cu-S), podem ter sido formados no estágio inicial de oxidação, com alterações superficiais induzidas pela temperatura (25°C até elevadas temperaturas) e a cominuição. Esses sulfetos formados e controlados pelas relações de fase no sistema Cu-Fe-S, foram a resposta ao equilíbrio de fases. As variações na composição química dos sulfetos de cobre, com deficiências catiônicas em cobre, permitiram uma variação composicional lenta, menor que quando há um excesso de cobre catiônico ou Fe que permitiu uma variação composicional maior. Essas deficiências formaram superfícies oxidadas dos sulfetos de cobre, com diferentes produtos de oxidação M1-nS e nM(OH)2. As variações químicas mostraram ser dependentes do tamanho de grão, com oxidações menores em tamanhos > 53 µm e maiores oxidações em tamanhos < 53 µm, isto causado por uma combinação de área superficial e a fase calcocita mais passível de ser oxidada. O excesso do ferro, provindo de partículas coloidais altamente reativas pode ter sido gerado no material do moinho, na ação abrasiva das partículas e na provável oxidação de magnetita, produzindo uma variação no ambiente químico do moinho e dando lugar a processos de corrosão eletroquímica. O minério cominuído conserva as texturas lepidoblásticas dos silicatos biotita, faialita e greenalita e granoblásticas de magnetita (ou grãos de bornita, calcocita e calcopirita). Eles são dependentes da característica xistosa das formações ferríferas da jazida. Os grãos dos sulfetos de cobre, liberados e misturados com alta porcentagem de magnetita e silicatos, mostram-se intensamente fraturados e erodidos, em grupos de cristais de bornita e calcocita (assumindo contatos lineares com os agregados idiomórficos a hipidiomórficos de magnetita) e mostrando, ainda, preenchimento de cracks e/ou fraturas de greenalita, que dificultam a liberação mineral. As liberações de sulfetos de cobre aumentam gradativamente quando o tamanho de grão é mais fino (mais de 50 % em tamanhos de grão < 29,6 µm). Somente nas frações < 37 µm (campo de liberação acumulada CLA90), as partículas contendo sulfetos de cobre começam a migrar para graus mais elevados de liberação, mas essa tendência pode ser insuficiente para propósitos de concentração dos sulfetos, devido à maior presença de sulfetos ainda sem liberar da ganga. Além da forte recristalização metamórfica das formações ferríferas e dureza elevada; dos tamanhos de grão extremamente variáveis de 5 a 300 µm dos sulfetos e; da complexidade mineralógica (associações mineralógicas, disseminações, intercrescimentos complexos) do minério, as investigações microquímicas no ROM e nos produtos de cominuição, revelaram uma significativa variação composicional nos sulfetos de cobre. O ferro, presente no retículo mineral dos sulfetos, é o contaminante causador das modificações químicas (razões Cu/Fe) dos sulfetos, influindo na qualidade de concentrados de cobre no processamento mineral. Já está também bastante bem estabelecido que entre os sulfetos de cobre e outros componentes de polpas na moagem e flotação (água, espécies coletores ou modificantes) ocorre uma interação por mecanismos eletroquímicos produzindo espécies oxidadas, em que a composição química do mineral em questão é muito importante. A alternativa tecnológica adequada para tratar os concentrados de cobre, com base nos estudos mineralógicos e microquímicos no run-of-mine (ROM) e nos produtos de cominuição, parece ser a hidrometalúrgica, pois podem aproveitar-se a produção de grãos finos e usar a remoagem para a produção de grãos ultrafinos. Estes podem ser submetidos a processos de oxidação dos sulfetos a fim de promover a extração do cobre. Finalmente a extração do cobre metálico pode seguir o processo de extração solvente/ eletrorrecuperação (SX/EW).